Thrombocytopenia is a critical problem that occurs in many hematologic diseases, as well as after cancer therapy and radiation exposure. Platelet transfusion is the most commonly used therapy but has limitations of alloimmunization, availability, and expense. Thus, the development of safe, small, molecules to enhance platelet production would be advantageous for the treatment of thrombocytopenia. Herein, we report that an important lipid mediator and a peroxisome
Peroxisome proliferator-activated receptor gamma (PPARgamma) is an important transcription factor for lipid and glucose metabolism. Currently, the PPARgamma ligands rosiglitazone and pioglitazone are used for the treatment of type 2 diabetes mellitus because they are potent insulin sensitizers. Recently, PPARgamma has emerged as an important anti-inflammatory factor. Platelets, anucleate cells involved in hemostasis, have also been implicated as key contributors to inflammation, because they produce many pro-inflammatory and pro-atherogenic mediators when activated. Surprisingly, it was discovered recently that platelets contain PPARgamma and that PPARgamma ligands, both natural and synthetic, inhibit platelet activation and release of bioactive mediators. In particular, release of soluble CD40 ligand (sCD40L) and thromboxane (TXA(2)) was inhibited by PPARgamma ligands in thrombin-activated platelets. CD40L signaling induces pro-inflammatory processes in many cell types, and increased blood levels of sCD40L are closely associated with inflammation, diabetes, and cardiovascular disease. Targeting platelet PPARgamma will, therefore, be an important treatment strategy for the attenuation of chronic inflammatory processes and prevention of thrombus formation.
SummaryPeroxisome proliferator-activated receptor γ (PPARγ) and its ligands are important regulators of lipid metabolism, inflammation, and diabetes. We previously demonstrated that anucleate human platelets express the transcription factor PPARγ and that PPARγ ligands blunt platelet activation. To further understand the nature of PPARγ in platelets, we determined the platelet PPARγ isoform(s) and investigated the fate of PPARγ following platelet activation. Our studies demonstrated that human platelets contain only the PPARγ1 isoform and after activation with thrombin, TRAP, ADP or collagen PPARγ is released from internal stores. PPARγ release was blocked by a cytoskeleton inhibitor, Latrunculin A. Platelet-released PPARγ was complexed with the retinoid X receptor (RXR) and retained its ability to bind DNA. Interestingly, the released PPARγ and RXR were microparticle associated and the released PPARγ/RXR complex retained DNA-binding ability. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript transcellular mechanism to attenuate THP-1 activation. These new findings are the first demonstrating transcription factor release from platelets, revealing the complex spectrum of proteins expressed and expelled from platelets, and suggest that platelet PPARγ has an undiscovered role in human biology.
Acyclovir (aciclovir) is a nucleoside antiviral drug with antiviral activity in vitro against members of the herpes group of DNA viruses. As an established treatment of herpes simplex infection, intravenous, oral and to a lesser extent topical formulations of acyclovir provide significant therapeutic benefit in genital herpes simplex and recurrent orofacial herpes simplex. The effect of acyclovir therapy is maximised by early initiation of treatment, especially in non-primary infection which tends to have a less protracted course than the primary episode. Long term prophylactic oral acyclovir, in patients with frequent episodes of genital herpes simplex, totally suppresses recurrences in the majority of subjects; as with other infections responding to acyclovir, viral latency is not eradicated and pretreatment frequencies of recurrence return after discontinuation of treatment. Caution should accompany the prophylactic use of acyclovir in the general population, due to the theoretical risk of the emergence of viral strains resistant to acyclovir and other agents whose mechanism of action is dependent on viral thymidine kinase. Intravenous acyclovir is the treatment of choice in biopsy-proven herpes simplex encephalitis in adults, and has also been successful in the treatment of disseminated herpes simplex in pregnancy and herpes neonatorium. Intravenous and oral acyclovir protect against dissemination and progression of varicella zoster virus infection, but do not protect against post-herpetic neuralgia. In immunocompromised patients, intravenous, oral and topical acyclovir shorten the clinical course of herpes simplex infections while prophylaxis with oral or intravenous dosage forms suppresses reactivation of infection during the period of drug administration. Ophthalmic application of 3% acyclovir ointment rapidly heals herpetic dendritic corneal ulcers and superficial herpetic keratitis. Thus, despite an inability to eradicate latent virus, acyclovir administered in therapeutic or prophylactic fashion is now the standard antiviral therapy in several manifestations of herpes simplex virus infection, and indeed represents a major advance in this regard. With the exception of varicella zoster virus infections, early optimism concerning the use of the drug in diseases due to other herpes viruses has generally not been supported in clinical investigations.
Historically, platelets were viewed as simple anucleate cells responsible for initiating thrombosis and maintaining hemostasis, but clearly they are also key mediators of inflammation and immune cell activation. An emerging body of evidence links platelet function and thrombosis to vascular inflammation. peroxisome proliferator-activated receptors (PPARs) play a major role in modulating inflammation and, interestingly, PPARs (PPARβ/δ and PPARγ) were recently identified in platelets. Additionally, PPAR agonists attenuate platelet activation; an important discovery for two reasons. First, activated platelets are formidable antagonists that initiate and prolong a cascade of events that contribute to cardiovascular disease (CVD) progression. Dampening platelet release of proinflammatory mediators, including CD40 ligand (CD40L, CD154), is essential to hinder this cascade. Second, understanding the biologic importance of platelet PPARs and the mechanism(s) by which PPARs regulate platelet activation will be imperative in designing therapeutic strategies lacking the deleterious or unwanted side effects of current treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.