IMPORTANCE Calcium-channel blockers are metabolized by the cytochrome P450 3A4 (CYP3A4; EC 1.14.13.97) enzyme. Blood concentrations of these drugs may rise to harmful levels when CYP3A4 activity is inhibited. Clarithromycin is an inhibitor of CYP3A4 and azithromycin is not, which makes comparisons between these 2 macrolide antibiotics useful in assessing clinically important drug interactions. OBJECTIVE To characterize the risk of acute adverse events following coprescription of clarithromycin compared with azithromycin in older adults taking a calcium-channel blocker. DESIGN, SETTING, AND PARTICIPANTS Population-based retrospective cohort study in Ontario, Canada, from 2003 through 2012 of older adults (mean age, 76 years) who were newly coprescribed clarithromycin (n = 96 226) or azithromycin (n = 94 083) while taking a calcium-channel blocker (amlodipine, felodipine, nifedipine, diltiazem, or verapamil). MAIN OUTCOMES AND MEASURES Hospitalization with acute kidney injury (primary outcome) and hospitalization with hypotension and all-cause mortality (secondary outcomes examined separately). Outcomes were assessed within 30 days of a new coprescription. RESULTS There were no differences in measured baseline characteristics between the clarithromycin and azithromycin groups. Amlodipine was the most commonly prescribed calcium-channel blocker (more than 50% of patients). Coprescribing clarithromycin vs azithromycin with a calcium-channel blocker was associated with a higher risk of hospitalization with acute kidney injury (420 patients of 96 226 taking clarithromycin [0.44%] vs 208 patients of 94 083 taking azithromycin [0.22%]; absolute risk increase, 0.22% [95% CI, 0.16%-0.27%]; odds ratio [OR], 1.98 [95% CI, 1.68-2.34]). In a subgroup analysis, the risk was highest with dihydropyridines, particularly nifedipine (OR, 5.33 [95% CI, 3.39-8.38]; absolute risk increase, 0.63% [95% CI, 0.49%-0.78%]). Coprescription with clarithromycin was also associated with a higher risk of hospitalization with hypotension (111 patients of 96 226 taking clarithromycin [0.12%] vs 68 patients of 94 083 taking azithromycin [0.07%]; absolute risk increase, 0.04% [95% CI, 0.02%-0.07%]; OR, 1.60 [95% CI, 1.18-2.16]) and all-cause mortality (984 patients of 96 226 taking clarithromycin [1.02%] vs 555 patients of 94 083 taking azithromycin [0.59%]; absolute risk increase, 0.43% [95% CI, 0.35%-0.51%]; OR, 1.74 [95% CI, 1.57-1.93]). CONCLUSIONS AND RELEVANCE Among older adults taking a calcium-channel blocker, concurrent use of clarithromycin compared with azithromycin was associated with a small but statistically significant greater 30-day risk of hospitalization with acute kidney injury. These findings support current safety warnings regarding concurrent use of CYP3A4 inhibitors and calcium-channel blockers.
Academic Medical Organization of Southwestern Ontario.
BackgroundLarge, population-based administrative healthcare databases can be used to identify patients with chronic kidney disease (CKD) when serum creatinine laboratory results are unavailable. We examined the validity of algorithms that used combined hospital encounter and physician claims database codes for the detection of CKD in Ontario, Canada.MethodsWe accrued 123,499 patients over the age of 65 from 2007 to 2010. All patients had a baseline serum creatinine value to estimate glomerular filtration rate (eGFR). We developed an algorithm of physician claims and hospital encounter codes to search administrative databases for the presence of CKD. We determined the sensitivity, specificity, positive and negative predictive values of this algorithm to detect our primary threshold of CKD, an eGFR <45 mL/min per 1.73 m2 (15.4% of patients). We also assessed serum creatinine and eGFR values in patients with and without CKD codes (algorithm positive and negative, respectively).ResultsOur algorithm required evidence of at least one of eleven CKD codes and 7.7% of patients were algorithm positive. The sensitivity was 32.7% [95% confidence interval: (95% CI): 32.0 to 33.3%]. Sensitivity was lower in women compared to men (25.7 vs. 43.7%; p <0.001) and in the oldest age category (over 80 vs. 66 to 80; 28.4 vs. 37.6 %; p < 0.001). All specificities were over 94%. The positive and negative predictive values were 65.4% (95% CI: 64.4 to 66.3%) and 88.8% (95% CI: 88.6 to 89.0%), respectively. In algorithm positive patients, the median [interquartile range (IQR)] baseline serum creatinine value was 135 μmol/L (106 to 179 μmol/L) compared to 82 μmol/L (69 to 98 μmol/L) for algorithm negative patients. Corresponding eGFR values were 38 mL/min per 1.73 m2 (26 to 51 mL/min per 1.73 m2) vs. 69 mL/min per 1.73 m2 (56 to 82 mL/min per 1.73 m2), respectively.ConclusionsPatients with CKD as identified by our database algorithm had distinctly higher baseline serum creatinine values and lower eGFR values than those without such codes. However, because of limited sensitivity, the prevalence of CKD was underestimated.
Some b-blockers are efficiently removed from the circulation by hemodialysis ("high dialyzability") whereas others are not ("low dialyzability"). This characteristic may influence the effectiveness of the b-blockers among patients receiving long-term hemodialysis. To determine whether new use of a highdialyzability b-blocker compared with a low-dialyzability b-blocker associates with a higher rate of mortality in patients older than age 66 years receiving long-term hemodialysis, we conducted a propensity-matched population-based retrospective cohort study using the linked healthcare databases of Ontario, Canada. The high-dialyzability group (n=3294) included patients initiating atenolol, acebutolol, or metoprolol. The low-dialyzability group (n=3294) included patients initiating bisoprolol or propranolol. Initiation of a highversus low-dialyzability b-blocker was associated with a higher risk of death in the following 180 days (relative risk, 1.4; 95% confidence interval, 1.1 to 1.8; P,0.01). Supporting this finding, we repeated the primary analysis in a cohort of patients not receiving hemodialysis and found no significant association between dialyzability and the risk of death (relative risk, 1.0; 95% confidence interval, 0.9 to 1.3; P=0.71). b-Blocker exposure was not randomly allocated in this study, so a causal relationship between dialyzability and mortality cannot be determined. However, our findings should raise awareness of this potentially important drug characteristic and prompt further study.
ObjectiveTo evaluate the validity of the International Classification of Diseases, Tenth Revision (ICD-10) code N17x for acute kidney injury (AKI) in elderly patients in two settings: at presentation to the emergency department and at hospital admission.DesignA population-based retrospective validation study.SettingSouthwestern Ontario, Canada, from 2003 to 2010.ParticipantsElderly patients with serum creatinine measurements at presentation to the emergency department (n=36 049) or hospital admission (n=38 566). The baseline serum creatinine measurement was a median of 102 and 39 days prior to presentation to the emergency department and hospital admission, respectively.Main outcome measuresSensitivity, specificity and positive and negative predictive values of ICD-10 diagnostic coding algorithms for AKI using a reference standard based on changes in serum creatinine from the baseline value. Median changes in serum creatinine of patients who were code positive and code negative for AKI.ResultsThe sensitivity of the best-performing coding algorithm for AKI (defined as a ≥2-fold increase in serum creatinine concentration) was 37.4% (95% CI 32.1% to 43.1%) at presentation to the emergency department and 61.6% (95% CI 57.5% to 65.5%) at hospital admission. The specificity was greater than 95% in both settings. In patients who were code positive for AKI, the median (IQR) increase in serum creatinine from the baseline was 133 (62 to 288) µmol/l at presentation to the emergency department and 98 (43 to 200) µmol/l at hospital admission. In those who were code negative, the increase in serum creatinine was 2 (−8 to 14) and 6 (−4 to 20) µmol/l, respectively.ConclusionsThe presence or absence of ICD-10 code N17× differentiates two groups of patients with distinct changes in serum creatinine at the time of a hospital encounter. However, the code underestimates the true incidence of AKI due to a limited sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.