Efforts to isolate uncultured microorganisms over the last century and a half, as well as the advanced ‘omics’ technologies developed over the last three decades, have greatly increased the knowledge and resources of microbiology. However, many cellular functions such as growth remain unknown in most of the microbial diversity identified through genomic sequences from environmental samples, as evidenced by the increasingly precise observations of the phenomenon known as the ‘great plate count anomaly’. Faced with the many microbial cells recalcitrant to cultivation present in environmental samples, Epstein proposed the ‘scout’ model, characterised by a dominance of dormant cells whose awakening would be strictly stochastic. Unfortunately, this hypothesis leaves few exploitable possibilities for microbial cultivation. This review proposes that many microorganisms follow the ‘comfort timing’ strategy, characterised by an exit from dormancy responding to a set of environmental conditions close to optimal for growth. This ‘comfort timing’ strategy offers the possibility of designing culture processes that could isolate a larger proportion of uncultured microorganisms. Two methods are briefly proposed in this article. In addition, the advantages of dormancy, of the ‘scout’ model and of the ‘comfort timing’ strategy for survival under difficult conditions, but also for colonisation of environments, are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.