Summary
Recent studies have demonstrated a need for increased rigour in building and evaluating ecological niche models (ENMs) based on presence‐only occurrence data. Two major goals are to balance goodness‐of‐fit with model complexity (e.g. by ‘tuning’ model settings) and to evaluate models with spatially independent data. These issues are especially critical for data sets suffering from sampling bias, and for studies that require transferring models across space or time (e.g. responses to climate change or spread of invasive species). Efficient implementation of procedures to accomplish these goals, however, requires automation.
We developed ENMeval, an R package that: (i) creates data sets for k‐fold cross‐validation using one of several methods for partitioning occurrence data (including options for spatially independent partitions), (ii) builds a series of candidate models using Maxent with a variety of user‐defined settings and (iii) provides multiple evaluation metrics to aid in selecting optimal model settings. The six methods for partitioning data are n−1 jackknife, random k‐folds ( = bins), user‐specified folds and three methods of masked geographically structured folds. ENMeval quantifies six evaluation metrics: the area under the curve of the receiver‐operating characteristic plot for test localities (AUCTEST), the difference between training and testing AUC (AUCDIFF), two different threshold‐based omission rates for test localities and the Akaike information criterion corrected for small sample sizes (AICc).
We demonstrate ENMeval by tuning model settings for eight tree species of the genus Coccoloba in Puerto Rico based on AICc. Evaluation metrics varied substantially across model settings, and models selected with AICc differed from default ones.
In summary, ENMeval facilitates the production of better ENMs and should promote future methodological research on many outstanding issues.
1. Quantitative evaluations to optimize complexity have become standard for avoiding overfitting of ecological niche models (ENMs) that estimate species' potential geographic distributions. ENMeval was the first R package to make such evaluations (often termed model tuning) widely accessible for the Maxent algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.