BackgroundDespite evidence that genetic factors contribute to gestational length and preterm birth, robust associations with genetic variants have not been identified. We hypothesized that analyzing larger data sets with gestational length information by genomewide association would reveal trait-influencing variants.MethodsWe performed a genomewide association study in a discovery data set of 43,568 women of European ancestry from 23andMe, Inc., for gestational length as a continuous trait and for term or preterm (<37 weeks) birth as a dichotomous outcome. We used three Nordic data sets (8,643 women) for replication of 14 genomic loci achieving either genomewide (P < 5×10-8) or suggestive association (P < 1×10-6).ResultsIn the discovery stage, for gestational length, four loci (EBF1, EEFSEC, AGTR2 and WNT4) achieved genomewide significance, all of which were replicated in the Nordic data sets. Functional analysis of the WNT4 locus indicated the likely causative variant alters the binding of ESR1. ADCY5 and RAP2C, which had suggestive significance in the discovery stage, were significantly replicated and achieved genomewide significance in joint analysis. Common variants in EBF1, EEFSEC and AGTR2 were also associated with preterm birth with genomewide significance. Analysis of mother-infant dyads indicated that these findings likely resulted from maternal genome actions.ConclusionsOur study is the first to identify maternal genetic variants robustly associated with gestational length and preterm birth. Roles of these loci in uterine development, maternal nutrition, and vascular control support their mechanistic involvement and create opportunities to investigate new risk factors for prevention of preterm birth.
Organismal function is, to a great extent, determined by interactions among their fundamental building blocks, the cells. In this work, we studied the cell-cell interactome of fetal placental trophoblast cells and maternal endometrial stromal cells, using single-cell transcriptomics. The placental interface mediates the interaction between two semiallogenic individuals, the mother and the fetus, and is thus the epitome of cell interactions. To study these, we inferred the cell-cell interactome by assessing the gene expression of receptor-ligand pairs across cell types. We find a highly cell-type-specific expression of G-protein-coupled receptors, implying that ligand-receptor profiles could be a reliable tool for cell type identification. Furthermore, we find that uterine decidual cells represent a cell-cell interaction hub with a large number of potential incoming and outgoing signals. Decidual cells differentiate from their precursors, the endometrial stromal fibroblasts, during uterine preparation for pregnancy. We show that decidualization (even in vitro) enhances the ability to communicate with the fetus, as most of the receptors and ligands up-regulated during decidualization have their counterpart expressed in trophoblast cells. Among the signals transmitted, growth factors and immune signals dominate, and suggest a delicate balance of enhancing and suppressive signals. Finally, this study provides a rich resource of gene expression profiles of term intravillous and extravillous trophoblasts, including the transcriptome of the multinucleated syncytiotrophoblast.
BACKGROUNDDespite evidence that genetic factors contribute to the duration of gestation and the risk of preterm birth, robust associations with genetic variants have not been identified. We used large data sets that included the gestational duration to determine possible genetic associations. METHODSWe performed a genomewide association study in a discovery set of samples obtained from 43,568 women of European ancestry using gestational duration as a continuous trait and term or preterm (<37 weeks) birth as a dichotomous outcome. We used samples from three Nordic data sets (involving a total of 8643 women) to test for replication of genomic loci that had significant genomewide association (P<5.0×10 −8 ) or an association with suggestive significance (P<1.0×10 −6 ) in the discovery set. RESULTSIn the discovery and replication data sets, four loci (EBF1, EEFSEC, AGTR2, and WNT4) were significantly associated with gestational duration. Functional analysis showed that an implicated variant in WNT4 alters the binding of the estrogen receptor. The association between variants in ADCY5 and RAP2C and gestational duration had suggestive significance in the discovery set and significant evidence of association in the replication sets; these variants also showed genomewide significance in a joint analysis. Common variants in EBF1, EEFSEC, and AGTR2 showed association with preterm birth with genomewide significance. An analysis of mother-infant dyads suggested that these variants act at the level of the maternal genome. CONCLUSIONSIn this genomewide association study, we found that variants at the EBF1, EEFSEC, AGTR2, WNT4, ADCY5, and RAP2C loci were associated with gestational duration and
The molecular changes that support implantation in eutherian mammals are necessary to establish pregnancy. In marsupials, pregnancy is relatively short, and although a placenta does form, it is present for only a few days before parturition. However, morphological changes in the uterus of marsupials at term mimic those that occur during implantation in humans and mice. We investigated the molecular similarity between term pregnancy in the marsupials and implantation in eutherian mammals using the gray short-tailed opossum (Monodelphis domestica) as a model. Transcriptomic analysis shows that term pregnancy in the opossum is characterized by an inflammatory response consistent with implantation in humans and mice. This immune response is temporally correlated with the loss of the eggshell, and we used immunohistochemistry to report that this reaction occurs at the materno-fetal interface. We demonstrate that key markers of implantation, including Heparin binding EGF-like growth factor and Mucin 1, exhibit expression and localization profiles consistent with the pattern observed during implantation in eutherian mammals. Finally, we show that there are transcriptome-wide similarities between the opossum attachment reaction and implantation in rabbits and humans. Our data suggest that the implantation reaction that occurs in eutherians is derived from an attachment reaction in the ancestral therian mammal which, in the opossum, leads directly to parturition. Finally, we argue that the ability to shift from an inflammatory attachment reaction to a noninflammatory period of pregnancy was a key innovation in eutherian mammals that allowed an extended period of intimate placentation.placenta | marsupial | inflammation | pregnancy | evolution I n eutherian (so-called "placental") mammals, pregnancy begins when the blastocyst attaches to the uterine wall, followed by the establishment of a stable fetal-maternal interface. Implantation involves the apposition, attachment, and, in many species, the invasion of the blastocyst into the uterus (1). In particular, structural and molecular changes occur in the luminal epithelia that allow the embryo to attach and invade the uterus (2). Epithelial changes are followed by remodeling of the endometrial stroma, generally known as "decidualization," i.e., the transformation of endometrial stromal fibroblasts into decidual stromal cells, as well as modifications of the endometrial vascular bed (3). When these changes do not occur or occur incompletely, blastocysts fail to implant, resulting in early pregnancy failure (4, 5). In humans, 75% of unsuccessful pregnancies are the result of failures of implantation, and implantation failure is the limiting factor for in vitro fertilization treatment. Furthermore, decades of research have failed to produce clinically effective treatments that increase uterine receptivity to implantation (6-8). Given the magnitude of this problem, extensive efforts have been made to characterize the endometrium for signatures of receptivity (9, 10).Implantati...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.