The cyclin-dependent kinase (Cdk) enzymes, when associated with the G1 cyclins D and E, are rate-limiting for entry into the S phase of the cell cycle. During T-cell mitogenesis, antigen-receptor signalling promotes synthesis of cyclin E and its catalytic partner, Cdk2, and interleukin-2 (IL-2) signalling activates cyclin E/Cdk2 complexes. Rapamycin is a potent immunosuppressant which specifically inhibits G1-to-S-phase progression, leading to cell-cycle arrest in yeast and mammals. Here we report that IL-2 allows Cdk activation by causing the elimination of the Cdk inhibitor protein p27Kip1, and that this is prevented by rapamycin. By contrast, the Cdk inhibitor p21 is induced by IL-2 and this induction is blocked by rapamycin. Our results show that p27Kip1 governs Cdk activity during the transition from quiescence to S phase in T lymphocytes and that p21 function may be restricted to cycling cells.
Neural stem cells are multipotent cells with the ability to differentiate into neurons, astrocytes, and oligodendrocytes. Lineage specification is strongly sensitive to the mechanical properties of the cellular environment. However, molecular pathways transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification remain unclear. We found that the mechanically gated ion channel Piezo1 is expressed by brainderived human neural stem/progenitor cells and is responsible for a mechanically induced ionic current. Piezo1 activity triggered by traction forces elicited influx of Ca 2+ , a known modulator of differentiation, in a substrate-stiffness-dependent manner. Inhibition of channel activity by the pharmacological inhibitor GsMTx-4 or by siRNA-mediated Piezo1 knockdown suppressed neurogenesis and enhanced astrogenesis. Piezo1 knockdown also reduced the nuclear localization of the mechanoreactive transcriptional coactivator Yes-associated protein. We propose that the mechanically gated ion channel Piezo1 is an important determinant of mechanosensitive lineage choice in neural stem cells and may play similar roles in other multipotent stem cells. (5) and that the mechanical properties of the culturing environment before transplantation can influence the outcome of in vivo stem cell transplants (6). Hence, a molecular and mechanistic understanding of how stem cells process mechanical cues and how this processing results in downstream signaling events and ultimately in fate decisions is needed for greater control over the fate of transplanted cells.Studies in mesenchymal and neural stem cells have revealed the involvement of focal adhesion zones and cytoskeletal proteins, such as integrins, nonmuscle myosin II (7), Rho GTPases (8-10), and vinculin (11), that participate in the generation of cellular traction forces. Recent work also has identified the nucleoskeletal protein lamin-A (12) and the transcriptional coactivators Yap (Yesassociated protein) and Taz (transcriptional coactivator with PDZbinding motif) (13) in mechanotransduction in mesenchymal stem cells. However, the mechanisms by which mechanical cues detected by cellular traction forces are transduced to downstream intracellular pathways of differentiation remain unclear.Ion channels are involved, directly or indirectly, in the transduction of all forms of physical stimuli-including sound, light, temperature, mechanical force, and even gravity-into intracellular signaling pathways. Hence, we wondered whether ion channels could be involved in transducing matrix mechanical cues to intracellular signaling pathways linked to lineage specification. In particular, we focused here on cationic stretch-activated channels (SACs) because they are known to detect mechanical forces with high sensitivity and broad dynamic range and because they are permeable to Ca 2+ , an important second messenger implicated in cell fate (14,15). We examined the role of SACs in neural stem cells, for which mechanical cues influence specification alo...
Cells deprived of serum mitogens will either undergo immediate cell cycle arrest or complete mitosis and arrest in the next cell cycle. The transition from mitogen dependence to mitogen independence occurs in the mid-to late G1 phase of the cell cycle and is called the restriction point. Murine Balb/c-3T3 fibroblasts deprived of serum mitogens accumulated the cyclin-dependent kinase (CDK) inhibitor p27Kip1. This was correlated with inactivation of essential G1 cyclin-CDK complexes and with cell cycle arrest in G1. The ability of specific mitogens to allow transit through the restriction point paralleled their ability to down-regulate p27, and antisense inhibition of p27 expression prevented cell cycle arrest in response to mitogen depletion. Therefore, p27 is an essential component of the pathway that connects mitogenic signals to the cell cycle at the restriction point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.