Electrophysiological alterations of the neuromuscular junction (NMJ) and motor unit potential (MUP) with unloading are poorly studied. We aimed to investigate these aspects and the underlying molecular mechanisms with short‐term unloading and active recovery (AR). Eleven healthy males underwent a 10‐day unilateral lower limb suspension (ULLS) period, followed by 21‐day AR based on resistance exercise. Quadriceps femoris (QF) cross‐sectional area (CSA) and isometric maximum voluntary contraction (MVC) were evaluated. Intramuscular electromyographic recordings were obtained during 10% and 25% MVC isometric contractions from the vastus lateralis (VL). Biomarkers of NMJ molecular instability (serum c‐terminal agrin fragment, CAF), axonal damage (neurofilament light chain) and denervation status were assessed from blood samples and VL biopsies. NMJ and ion channel transcriptomic profiles were investigated by RNA‐sequencing. QF CSA and MVC decreased with ULLS. Increased CAF and altered NMJ transcriptome with unloading suggested the emergence of NMJ molecular instability, which was not associated with impaired NMJ transmission stability. Instead, increased MUP complexity and decreased motor unit firing rates were found after ULLS. Downregulation of ion channel gene expression was found together with increased neurofilament light chain concentration and partial denervation. The AR period restored most of these neuromuscular alterations. In conclusion, the human NMJ is destabilized at the molecular level but shows functional resilience to a 10‐day unloading period at least at relatively low contraction intensities. However, MUP properties are altered by ULLS, possibly due to alterations in ion channel dynamics and initial axonal damage and denervation. These changes are fully reversed by 21 days of AR.
Key points
We used integrative electrophysiological and molecular approaches to comprehensively investigate changes in neuromuscular integrity and function after a 10‐day unilateral lower limb suspension (ULLS), followed by 21 days of active recovery in young healthy men, with a particular focus on neuromuscular junction (NMJ) and motor unit potential (MUP) properties alterations.
After 10‐day ULLS, we found significant NMJ molecular alterations in the absence of NMJ transmission stability impairment. These findings suggest that the human NMJ is functionally resilient against insults and stresses induced by short‐term disuse at least at relatively low contraction intensities, at which low‐threshold, slow‐type motor units are recruited.
Intramuscular electromyography analysis revealed that unloading caused increased MUP complexity and decreased motor unit firing rates, and these alterations could be related to the observed changes in skeletal muscle ion channel pool and initial and partial signs of fibre denervation and axonal damage.
The active recovery period restored these neuromuscular changes.
Objective
To determine cardiorespiratory fitness and neuromuscular function of people with CFS and FMS compared to healthy individuals.
Design
Systematic review and meta-analysis.
Data sources
PubMed, Medline, CINAHL, AMED, Cochrane Central Register of Controlled Trials (CENTRAL), and PEDro from inception to June 2022.
Eligible criteria for selecting studies
Studies were included if presenting baseline data on cardiorespiratory fitness and/or neuromuscular function from observational or interventional studies of patients diagnosed with FMS or CFS. Participants were aged 18 years or older, with results also provided for healthy controls. Risk of bias assessment was conducted using the Quality Assessment Tool for Quantitative Studies (EPHPP).
Results
99 studies including 9853 participants (5808 patients; 4405 healthy controls) met our eligibility criteria. Random effects meta-analysis showed lower cardiorespiratory fitness (VO2max, anaerobic threshold, peak lactate) and neuromuscular function (MVC, fatigability, voluntary activation, muscle volume, muscle mass, rate of perceived exertion) in CFS and FMS compared to controls: all with moderate to high effect sizes.
Discussion
Our results demonstrate lower cardiorespiratory fitness and muscle function in those living with FMS or CFS when compared to controls. There were indications of dysregulated neuro-muscular interactions including heightened perceptions of effort, reduced ability to activate the available musculature during exercise and reduced tolerance of exercise.
Trail registration
PROSPERO registration number: (CRD42020184108).
This paper presents an end-to-end solution for MRI thigh quadriceps segmentation. This is the first attempt that deep learning methods are used for the MRI thigh segmentation task. We use the state-of-the-art Fully Convolutional Networks with transfer learning approach for the semantic segmentation of regions of interest in MRI thigh scans. To further improve the performance of the segmentation, we propose a post-processing technique using basic image processing methods. With our proposed method, we have established a new benchmark for MRI thigh quadriceps segmentation with mean Jaccard Similarity Index of 0.9502 and processing time of 0.117 second per image.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.