In vivo, by immunostaining EndoMT-like cells were detected at the invasive front of EAC. Our findings underscore a significant role for EndoMT in EAC and provide new insights into the mechanisms and significance of EndoMT in the context of tumor progression.
Polyphenolic compounds (anthocyanins, flavonoid glycosides) in berries prevent the initiation, promotion, and progression of carcinogenesis in rat’s digestive tract and esophagus, in part, via anti-inflammatory pathways. Angiogenesis has been implicated in the pathogenesis of chronic inflammation and tumorigenesis. In this study, we investigated the anti-inflammatory and anti-angiogenic effects of black raspberry extract (BRE) on two organ specific primary human intestinal microvascular endothelial cells, (HIMEC) and human esophageal microvascular endothelial cells (HEMEC), isolated from surgically resected human intestinal and donor discarded esophagus, respectively.
HEMEC and HIMEC were stimulated with TNF-α/IL-1β with or without BRE. The anti-inflammatory effects of BRE were assessed based upon COX-2, ICAM-1 and VCAM-1 gene and protein expression, PGE2 production, NFκB p65 subunit nuclear translocation as well as endothelial-leukocyte adhesion. The anti-angiogenic effects of BRE were assessed on cell migration, proliferation and tube formation following VEGF stimulation as well as on activation of Akt, MAPK and JNK signaling pathways.
BRE inhibited TNF-α/IL-1β-induced NFκB p65 nuclear translocation, PGE2 production, up-regulation of COX-2, ICAM-1 and VCAM-1 gene and protein expression and leukocyte binding in HEMEC but not in HIMEC. BRE attenuated VEGF-induced cell migration, proliferation and tube formation in both HEMEC and HIMEC. The anti-angiogenic effect of BRE is mediated by inhibition of Akt, MAPK and JNK phosphorylations.
BRE exerted differential anti-inflammatory effects between HEMEC and HIMEC following TNF-α/IL-1β activation whereas demonstrated similar anti-angiogenic effects following VEGF stimulation in both cell lines. These findings may provide more insight into the anti-tumorigenic capacities of BRE in human disease and cancer.
Background
The objective of this study was to determine if neonatal cystitis alters colonic sensitivity later in life and to investigate the role of peripheral mechanisms.
Methods
Neonatal rats received intravesical zymosan, normal saline, or anesthesia only for three consecutive days (postnatal days 14th–16th). The estrous cycle phase was determined prior to recording the visceromotor response (VMR) to colorectal distension (CRD) in adult rats. Eosinophils and mast cells were examined from colon and bladder tissue. CRD or urinary bladder distension (UBD)-sensitive pelvic nerve afferents (PNAs) were identified and their responses to distension were examined. The relative expression of N-methyl-D-aspartic acid (NMDA) NR1 subunit in the L6-S1 spinal cord was examined using Western blot.
Results
The VMR to CRD (≥10mmHg) in the neonatal zymosan group was significantly higher than control in both the diestrus, estrus phase and in all phases combined. There was no difference in the total number of eosinophils, mast cells or number of degranulated mast cells between groups. The spontaneous firing of UBD, but not CRD-sensitive PNAs from the zymosan rats was significantly higher than the control. However, the mechanosensitive properties of PNAs to CRD or UBD were no different between groups (p > 0.05). The expression of spinal NR1 subunit was significantly higher in zymosan-treated rats compared to saline treated rats (p <0.05).
Conclusion
Neonatal cystitis results in colonic hypersensitivity in adult rats without changing tissue histology or the mechanosensitive properties of CRD-sensitive PNAs. Neonatal cystitis does results in overexpression of spinal NR1 subunit in adult rats.
Background & Aims
The cingulate cortex (CC) has been reported to be involved in processing pain of esophageal origin. However, little is known about molecular changes and cortical activation that arise from early-life, esophageal acid reflux. Excitatory neurotransmission via activation of the N-methyl-D-aspartate (NMDA) receptor and its interaction with post-synaptic density protein-95 (PSD-95) at the synapse appears to mediate neuronal development and plasticity. We investigated the effect of early-life esophageal acid exposure on NMDA receptor subunits and PSD-95 expression in the developing CC.
Methods
We assessed NMDA receptor subunits and PSD-95 protein expression in rostral CC (rCC) tissues of rats exposed to esophageal acid or saline (control), either during post-natal days 7–14 (P7–P14) and/or acutely, at adult stage (P60), using immunoblot and immunoprecipitation analyses.
Results
Compared with controls, acid exposure from P7 to P14 significantly increased expression of NR1, NR2A, and PSD-95, measured 6 weeks after exposure. However, acute exposure at P60 caused a transient increase in expression of NMDA receptor subunits. These molecular changes were more robust in animals exposed to acid neonatally and rechallenged, acutely, at P60. Esophageal acid exposure induced calcium calmodulin kinase II-mediated phosphorylation of the subunit NR2B at Ser1303.
Conclusions
Esophageal acid exposure during early stages of life has long-term effects, because of phosphorylation of the NMDA receptor and overexpression in the rCC. This molecular alteration in the rCC might mediate sensitization of patients with acid-induced esophageal disorders.
Lyros O, Rafiee P, Nie L, Medda R, Jovanovic N, Schmidt J, Mackinnon A, Venu N, Shaker R. Dickkopf-1, the Wnt antagonist, is induced by acidic pH and mediates epithelial cellular senescence in human reflux esophagitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.