Our study demonstrates that 2HG-MRS can be linked with routine MR imaging to provide quantitative measurements of 2HG in glioma and may be useful as an imaging biomarker to monitor the abundance of IDH-mutant tumor cells noninvasively during glioma therapy and disease monitoring.
Diffuse intrinsic pontine glioma is the most common brainstem tumor in pediatric patients. This tumor remains one of the most deadly pediatric brain tumors. The diagnosis primarily relies on clinical symptoms and imaging findings. Conventional MRI provides a noninvasive accurate method of diagnosis of these tumors. Advanced MRI techniques are becoming more widely used and studied as additional noninvasive methods to assist clinicians in initial diagnosis and staging, monitoring disease, as well as in surgical and radiation planning. This article will provide an overview of DIPG and describe the typical imaging findings with a focus on advanced imaging techniques.
Brain metastases originating from different primary sites overlap in appearance and are difficult to differentiate with conventional MRI. Dynamic contrast‐enhanced (DCE)‐MRI can assess tumor microvasculature and has demonstrated utility in characterizing primary brain tumors. Our aim was to evaluate the performance of plasma volume (Vp) and volume transfer coefficient (K
trans) derived from DCE‐MRI in distinguishing between melanoma and nonsmall cell lung cancer (NSCLC) brain metastases. Forty‐seven NSCLC and 23 melanoma brain metastases were retrospectively assessed with DCE‐MRI. Regions of interest were manually drawn around the metastases to calculate Vpmean and Knormalmeantrans. The Mann–Whitney U test and receiver operating characteristic analysis (ROC) were performed to compare perfusion parameters between the two groups. The Vpmean of melanoma brain metastases (4.35, standard deviation [SD] = 1.31) was significantly higher (P = 0.03) than Vpmean of NSCLC brain metastases (2.27, SD = 0.96). The Knormalmeantrans values were higher in melanoma brain metastases, but the difference between the two groups was not significant (P = 0.12). Based on ROC analysis, a cut‐off value of 3.02 for Vpmean (area under curve = 0.659 with SD = 0.074) distinguished between melanoma brain metastases and NSCLC brain metastases (P < 0.01) with 72% specificity. Our data show the DCE‐MRI parameter Vpmean can differentiate between melanoma and NSCLC brain metastases. The ability to noninvasively predict tumor histology of brain metastases in patients with multiple malignancies can have important clinical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.