Healthcare expenditures in the United States are growing at an alarming level with the Centers for Medicare and Medicaid Services (CMS) projecting that they will reach $5.7 trillion per year by 2026. Inflammatory diseases and related syndromes are growing in prevalence among Western societies. This growing population that affects close to 60 million people in the U.S. places a significant burden on the healthcare system. Characterized by relatively slow development, these diseases and syndromes prove challenging to diagnose, leading to delayed treatment against the backdrop of inevitable disability progression. Patients require healthcare attention but are initially hidden from clinician’s view by the seemingly generalized, non-specific symptoms. It is imperative to identify and manage these underlying conditions to slow disease progression and reduce the likelihood that costly comorbidities will develop. Enhanced diagnostic criteria coupled with additional technological innovation to identify inflammatory conditions earlier is necessary and in the best interest of all healthcare stakeholders. The current total cost to the U.S. healthcare system is at least $90B dollars annually. Through unique analysis of financial cost drivers, this review identifies opportunities to improve clinical outcomes and help control these disease-related costs by 20% or more.
IntroductionThe SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the USA, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities.MethodsWe combined county-level COVID-19 testing data, COVID-19 vaccination rates and SDOH information in Tennessee. Between February and May 2021, we trained machine learning models on a semimonthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance.ResultsOur results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased.ConclusionIncorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policy-makers with additional data resources to improve health equity and resilience to future public health emergencies.
IntroductionThe SARS-CoV-2 (COVID-19) pandemic has exposed the need to understand the risk drivers that contribute to uneven morbidity and mortality in US communities. Addressing the community-specific social determinants of health (SDOH) that correlate with spread of SARS-CoV-2 provides an opportunity for targeted public health intervention to promote greater resilience to viral respiratory infections.MethodsOur work combined publicly available COVID-19 statistics with county-level SDOH information. Machine learning models were trained to predict COVID-19 case growth and understand the social, physical and environmental risk factors associated with higher rates of SARS-CoV-2 infection in Tennessee and Georgia counties. Model accuracy was assessed comparing predicted case counts to actual positive case counts in each county.ResultsThe predictive models achieved a mean R2 of 0.998 in both states with accuracy above 90% for all time points examined. Using these models, we tracked the importance of SDOH data features over time to uncover the specific racial demographic characteristics strongly associated with COVID-19 incidence in Tennessee and Georgia counties. Our results point to dynamic racial trends in both states over time and varying, localized patterns of risk among counties within the same state. For example, we find that African American and Asian racial demographics present comparable, and contrasting, patterns of risk depending on locality.ConclusionThe dichotomy of demographic trends presented here emphasizes the importance of understanding the unique factors that influence COVID-19 incidence. Identifying these specific risk factors tied to COVID-19 case growth can help stakeholders target regional interventions to mitigate the burden of future outbreaks.
The SARS-CoV-2 (COVID-19) pandemic has exposed health disparities throughout the United States, particularly among racial and ethnic minorities. As a result, there is a need for data-driven approaches to pinpoint the unique constellation of clinical and social determinants of health (SDOH) risk factors that give rise to poor patient outcomes following infection in US communities. We combined county-level COVID-19 testing data, COVID-19 vaccination rates, and SDOH information in Tennessee. Between February-May 2021, we trained machine learning models on a semi-monthly basis using these datasets to predict COVID-19 incidence in Tennessee counties. We then analyzed SDOH data features at each time point to rank the impact of each feature on model performance. Our results indicate that COVID-19 vaccination rates play a crucial role in determining future COVID-19 disease risk. Beginning in mid-March 2021, higher vaccination rates significantly correlated with lower COVID-19 case growth predictions. Further, as the relative importance of COVID-19 vaccination data features grew, demographic SDOH features such as age, race, and ethnicity decreased while the impact of socioeconomic and environmental factors, including access to healthcare and transportation, increased. Incorporating a data framework to track the evolving patterns of community-level SDOH risk factors could provide policymakers with additional data resources to improve health equity and resilience to future public health emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.