SUMMARYWind is often regarded as the foe of tall buildings since it tends to be the governing lateral load. Careful aerodynamic design of tall buildings through wind tunnel testing can greatly reduce wind loads and their affect on building motions. Various shaping strategies are discussed, aimed particularly at suppression of vortex shedding since it is frequently the cause of crosswind excitation. The use of supplementary damping systems is another approach that takes the energy out of building motions and reduces loads. Different applications of damping systems are described on several buildings, and an example of material savings and reduced carbon emissions is given. Wind also has some potential benefi cial effects particularly to tall buildings. One is that, since wind speeds are higher at the heights of tall buildings, the potential for extracting wind energy using wind turbines is significantly improved compared with ground level. This paper explores how much energy might be generated in this way relative to the building's energy usage. Other benefi ts are to be found in judicious use of natural ventilation, sometimes involving double-layer wall systems, and, in hot climates, the combination of tailored wind and shade conditions to improve outdoor comfort near tall buildings and on balconies and terraces.
<p>In recent years in North America, there has been a growing trend towards using Supplementary Damping Systems (SDS) to improve the wind-induced dynamic behavior of mid-rise to high-rise buildings. During the design stages of a project, incorporating an SDS into the building is an efficient way to reduce expected tower motions and thereby enhances the comfort experience for the future occupants of the building. Likewise, the improvement in building dynamic performance can also be used to strategically optimize the structural system.</p><p>A design benefit analysis of an SDS is currently being applied to a proposed high-rise residential building in Toronto, Canada. For this project, Halcrow Yolles Structural Engineers and RWDI Motioneering Consulting Engineers have performed design assessments of the expected dynamic performance of the building. The original design of the tower’s lateral system was performed using conventional methods, with motion criteria satisfied by way of a coupled shear wall core to provide sufficient stiffness properties. As an option to the project developer, a study was conducted to investigate implementing an SDS to the original lateral system design to simultaneously: (a) minimize the thicknesses of the concrete core shear walls (thereby saving construction materials, costs, and maximizing useable floor space for the developer) and, (b) maintain the tower motions within acceptable comfort guidelines for future occupants.</p><p>A cost/benefit analysis has been performed which indicates that significant savings in structural costs (between $400,000 and $500,000) are possible, which can offset the expense of designing and constructing an SDS. “Green benefits” of saving concrete and reinforcing steel can translate into reductions in greenhouse gas emissions (CO2) of about 670 tons (the equivalent of removing about 143,000 cars from the road for one typical day in North America). These ‘green benefits’ can earn credits towards LEED certification or similar building credentials. As a second option for the developer, assessments indicate that by using an SDS five additional residential floors could be added without changes to the baseline structural core system, wall thicknesses, or unit layouts. This could result in approximately $30 million of additional sales revenue for the developer without significant modifications to the original design.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.