The technology that allows fully automated driving already exists and it may gradually enter the market over the forthcoming decades. Technology assimilation and automated vehicle acceptance in different countries is of high interest to many scholars, manufacturers, and policymakers worldwide. We model the mode choice between automated vehicles and conventional cars using a mixed multinomial logit heteroskedastic error component type model. Specifically, we capture preference heterogeneity assuming a continuous distribution across individuals. Different choice scenarios, based on respondents’ reported trip, were presented to respondents from six European countries: Cyprus, Hungary, Iceland, Montenegro, Slovenia, and the UK. We found that large reservations towards automated vehicles exist in all countries with 70% conventional private car choices, and 30% automated vehicles choices. We found that men, under the age of 60, with a high income who currently use private car, are more likely to be early adopters of automated vehicles. We found significant differences in automated vehicles acceptance in different countries. Individuals from Slovenia and Cyprus show higher automated vehicles acceptance while individuals from wealthier countries, UK, and Iceland, show more reservations towards them. Nontrading mode choice behaviors, value of travel time, and differences in model parameters among the different countries are discussed.
The preferences of travelers determines the utility of daily activity plans. Decision-makers can affect the preference of travelers when they force private car users to use park-and-ride (P&R) facilities as a way of decreasing traffic in city centers. The P&R system has been shown to be effective in reducing uninterrupted increases in traffic congestion, especially in city centers. Therefore, the impacts of P&R on travel behavior and the daily activity plans of both worker and shopper travelers were studied in this paper. Moreover, autonomous vehicles (AVs) are a promising technology for the coming decade. A simulation of the AV as part of a multimodal system, when the P&R system was integrated in the daily activity plans, was carried out to determine the required AV fleet size needed to fulfill a certain demand and to study the impacts of AVs on the behavior of travelers (trip time and distance). Specifically, a group of travelers, who use private cars as their transport mode, was studied, and certain modifications to their daily activity plans, including P&R facilities and changing their transport mode, were introduced. Using the MATSim open-source tool, four scenarios were simulated based on the mentioned modifications. The four scenarios included (1) a simulation of the existing transport modes of the travelers, (2) a simulation of their daily activity plans when their transport modes were changed to AVs, (3) a simulation of the travelers, when P&R facilities were included in their activity chain plans, and (4) a simulation of their daily activity plans, when both P&R and AVs were included in their activity chain plans. The result showed that using the P&R system increased overall travel time, compared with using a private car. The results also demonstrated that using AVs as a replacement for conventional cars reduced travel time. In conclusion, the impact of P&R and AVs on the travel behavior of certain travelers was evaluated in this paper.
The introduction of shared autonomous vehicles into the transport system is suggested to bring significant impacts on traffic conditions, road safety and emissions, as well as overall reshaping travel behaviour. Compared with a private autonomous vehicle, a shared automated vehicle (SAV) is associated with different willingness-to-adopt and willingness-to-pay characteristics. An important aspect of future SAV adoption is the presence of other passengers in the SAV—often people unknown to the cotravellers. This study presents a cross-country exploration of user preferences and WTP calculations regarding mode choice between a private non-autonomous vehicle, and private and shared autonomous vehicles. To explore user preferences, the study launched a survey in seven European countries, including a stated-preference experiment of user choices. To model and quantify the effect of travel mode attributes and socio-demographic characteristics, the study employs a mixed logit model. The model results were the basis for calculating willingness-to-pay values for all countries and travel modes, and provide insight into the significant heterogeneous, gender-wise effect of cotravellers in the choice to use an SAV. The study results highlight the importance of analysis of the effect of SAV attributes and shared-ride conditions on the future acceptance and adoption rates of such services.
Introducing autonomous vehicles (AVs) on the market is likely to bring changes in the mobility of travelers. In this work, extensive research is conducted to study the impact of different levels of automation on the mobility of people, and full driving automation needs further study because it is still under development. The impacts of AVs on travel behavior can be studied by integrating AVs into activity-based models. The contribution of this study is the estimation of AVs’ impacts on travelers’ mobility when different travel demands are provided, and also the estimation of AVs’ impact on the modal share considering the different willingness of pay to travel by AVs. This study analyses the potential impacts of AVs on travel behavior by investigating a sample of 8500 travelers who recorded their daily activity plans in Budapest, Hungary. Three scenarios are derived to study travel behavior and to find the impacts of the AVs on the conventional transport modes. The scenarios include (1) a simulation of the existing condition, (2) a simulation of AVs as a full replacement for conventional transport modes, and (3) a simulation of the AVs with conventional transport modes concerning different marginal utilities of travel time in AVs. The simulations are done by using the Multi-Agent Transport Simulation (MATSim) open-source software, which applies a co-evolutionary optimization algorithm. Using the scenarios in the study, we develop a base model, determine the required fleet size of AVs needed to fulfill the demand of the different groups of travelers, and predict the new modal shares of the transport modes when AVs appear on the market. The results demonstrate that the travelers are exposed to a reduction in travel time once conventional transport modes are replaced by AVs. The impact of the value of travel time (VOT) on the usage of AVs and the modal share is demonstrated. The decrease in the VOT of AVs increases the usage of AVs, and it particularly decreases the usage of cars even more than other transport modes. AVs strongly affect the public transport when the VOT of AVs gets close to the VOT of public transport. Finally, the result shows that 1 AV can replace 7.85 conventional vehicles with acceptable waiting time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.