Cyclic di-GMP (c-di-GMP) has emerged as a prominent intracellular messenger that coordinates biofilm formation and pathogenicity in many bacterial species. Developing genetically encoded biosensors for c-di-GMP will help us understand how bacterial cells respond to environmental changes via the modulation of cellular c-di-GMP levels. Here we report the design of two genetically encoded c-di-GMP fluorescent biosensors with complementary dynamic ranges. By using the biosensors, we found that several compounds known to promote biofilm dispersal trigger a decline in c-di-GMP levels in Escherichia coli cells. In contrast, cellular c-di-GMP levels were elevated when the bacterial cells were treated with subinhibitory concentrations of biofilm-promoting antibiotics. The biosensors also revealed that E. coli cells engulfed by macrophages exhibit lower c-di-GMP levels, most likely as a response to the enormous pressures of survival during phagocytosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.