The acid-base properties of a lignocellulosic substrate extracted from wheat bran have been investigated. The lignocellulosic substrate was first studied by use of FTIR, XPS, and solid-state 13C NMR to characterize the surface-active groups. Major contributions arise from the presence of carboxylic and phenolic sites. The former are associated with long-chain fatty acids and the latter are constituent units of lignin. All ionizable sites were quantified by use of the Ca-acetate method and by potentiometric titrations in non-aqueous media. Results were compared with those from conductimetric titrations in water and in the presence of barium ions. Protometric titration curves for the lignocellulosic substrate were obtained at several ionic strengths. Data were also treated with the NICA-Donnan model to determine the intrinsic ionization parameters.
Lignocellulosic substrate (LS), which is a low cost biomaterial, has a strong complexing ability and can be used in the treatment of wastewaters as biosorbentto remove heavy metals. The speciation of copper and lead to this biomaterial has been studied by X-ray absorption spectroscopy. The copper(II) has a 6-coordinate structure with four oxygen atoms in the equatorial plane at 1.95 A and two in axial position at 2.35 A. In the case of lead a particularly low coordination number of about 3 has been obtained. The combination of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) suggested that Cu and Pb are bound to the surface of LS through carboxylic moieties.
We studied the removal of copper and zinc ions from aqueous solutions using a lignocellulosic substrate obtained by an acido-basic treatment of wheat bran. The sorption capacity of this material was investigated through batch and column experiments. Batch experimental results showed that the retention capacity of the lignocellulosic substrate was 0.2010 3 mol g 1 at pH 4.5 for copper(II) and 0.2410 3 mol g 1 at pH 6.5 for zinc(II). Column experiments showed a reduced sorption capacity for both ions compared to batch experiments. Batch and column data were analysed using the Langmuir equation in order to determine the affinity constant and the binding capacity of the sorbent and to compare both retention processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.