The earliest lymphoid precursor population in the adult mouse thymus had previously been shown to produce not only T cells, but also dendritic cell (DC) progeny on transfer to irradiated recipients. In this study, culture of these isolated thymic precursors with a mixture of cytokines induced them to proliferate and to differentiate to DC, but not to T lineage cells. At least 70% of the individual precursors had the capacity to form DC. The resultant DC were as effective as normal thymic DC in the functional test of T cell stimulation in mixed leukocyte cultures. The cultured DC also expressed high levels of class I and class II major histocompatibility complex, together with CD11c, DEC-205, CD80, and CD86, markers characteristic of mature DC in general. However, they did not express CD8α or BP-1, markers characteristic of normal thymic DC. The optimized mixture of five to seven cytokines required for DC development from these thymic precursors did not include granulocyte/macrophage colony stimulating factor (GM-CSF), usually required for DC development in culture. The addition of anti–GM-CSF antibody or the use of precursors from GM-CSF–deficient mice did not prevent DC development. Addition of GM-CSF was without effect on DC yield when interleukin (IL) 3 and IL-7 were present, although some stimulation by GM-CSF was noted in their absence. In contrast, DC development was enhanced by addition of the Flt3/Flk2 ligand, in line with the effects of the administration of this cytokine in vivo. The results indicate that the development of a particular lineage of DC, probably those of lymphoid precursor origin, may be independent of the myeloid hormone GM-CSF.
Cytomegalovirus (CMV) infection is endemic in Gambian infants, with 62% infected by 3 months and 85%by 12 months of age. We studied the CD8 T-cell responses of infants to CMV following primary infection. CMV-specific CD8 T cells, identified with tetramers, showed a fully differentiated phenotype (CD28. Strikingly, the overall CD8 T-cell population developed a similar phenotype following CMV infection, which persisted for at least 12 months. In contrast, primary infection was accompanied by up-regulation of markers of activation (CD45R0 and HLA-D) on both CMV-specific cells and the overall CD8 T-cell population and division (Ki-67) of specific cells, but neither pattern persisted. At 12 months of age, the CD8 T-cell population of CMV-infected infants was more differentiated than that of uninfected infants. Although the subpopulation of CMV-specific cells remained constant, the CMV peptidespecific gamma interferon response was lower in younger infants and increased with age. As the CD8 T-cell phenotype induced by CMV is indicative of immune dysfunction in the elderly, the existence of a similar phenotype in large numbers of Gambian infants raises the question of whether CMV induces a similarly deleterious effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.