Effect of titania loading on physical–chemical properties and bifunctional catalytic activity of phosphate–vanadia-impregnated silica–titania was investigated. Different concentrations of titanium were impregnated into fumed silica, followed by impregnation of vanadium and phosphoric acid simultaneously onto the prepared silica–titania. Results revealed that Ti amount did not have significant effect on crystallinity, surface area and particle size of the resulted materials. However, quantity of tetrahedrally coordinated Ti species increased with increasing Ti content in the sample. Pyridine adsorption study showed the presence of both Brønsted and Lewis acid sites in all the samples even in the titanium-free phosphate–vanadia-impregnated silica sample. The catalytic testing showed that phosphate–vanadia-impregnated silica–titania with the molar ratio of Si:Ti=33:1 was the best bifunctional catalyst in the transformation of 1-octene to 1,2-octanediol using aqueous hydrogen peroxide as oxidant.
A series of sulphate-vanadia impregnated fumed silica oxidative catalysts were synthesized via impregnation method. The samples were prepared by impregnation of 1 wt% of vanadium and 0.2 M of sulphuric acid onto fumed silica as support. Surface area of the silica supported samples were similar of 118 m2/g. UV-Vis DRS results showed existence of o supported V species and the charge transfer bands associated with O2- to V5+ in tetrahedral environments. Catalytic performance were evaluated via epoxidation of 1-octene to 1,2-epoxyoctane using hydrogen peroxide as an oxidant. It had been demonstrated that sulphate-vanadia impregnated fumed silica had high catalytic activity of 626 ± 0.2 mmol epoxide was produced after 24 h reaction. This may indicate that more oxidative sites were generated after the impregnation of V and sulphate onto the SiO2 matrixes.
The effect of phosphoric acid treatment on the physical-chemical properties and catalytic activity of the niobium-doped silica-titania bifunctional catalyst was investigated. As part of the synthesis procedure to produce xPO4−/Nb/TiO2-SiO2, different concentrations of phosphoric acid (H3PO4) were used (x= 0, 0.05, 0.10, 0.15, 0.20, 0.25 M). As shown by XRD analysis, the samples synthesized using 0–0.20 M H3PO4 were in amorphous form, as featureless diffractograms were obtained, indicating the PO4− groups were dispersed homogeneously on the surface of Nb doped SiO2-TiO2. Due to the increased concentration of acid, other compounds were formed in the samples by reactions between PO4− and Nb and/or Ti. Additionally, UV-Vis DRS results indicated that the presence of the PO4− group accelerated the transformation of hydrated tetrahedral Ti species into isolated tetrahedral Ti species. An experimental investigation of the catalytic performance of the catalyst was conducted using 1,2-epoxyoctane as an oxidant for the epoxidation of 1-octene to 1,2-octanediol. It has been demonstrated that H3PO4 treatment was essential for oxidative and acidity active site formation. The current research findings strongly suggested that Nb-doped TiO2-SiO2 treated with 0.2 M H3PO4 was the most effective bifunctional catalyst in generating 1,2-octanediol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.