The search for less expensive and viable products is always one of the challenges for research development. Commonly, the synthesis of coordination compounds involves expensive ligands, through expensive and low-yield routes, in addition to generating toxic and unusable residues. In this work, the organic ligand used is derived from the resin of a reforestation tree, Pinus elliottii var. elliottii. The synthesis method used Pinus resin and an aqueous solution of vanadium(III) chloride at a temperature of 80 °C. The procedure does not involve organic solvents and does not generate toxic residues, thus imparting the complex formation reaction a green chemistry character. The synthesis resulted in an unprecedented oxovanadium(IV)-bis(abietate) complex, which was characterized by mass spectrometry (MS), chemical analysis (CHN), vibrational (FTIR) and electronic spectra (VISIBLE), X-ray diffraction (XRD), and thermal analysis (TG/DTA). Colorimetric studies were performed according to the CIELAB color space. The structural formula found, consisted of a complex containing two abietate ligands, [VO(C20H29O2)2]. The VO(IV)-bis(abietate) complex was applied against microorganisms and showed promising results in antibacterial and antifungal activity. The best result of inhibitory action was against the strains of Gram-positive bacteria S. aureus and L. monocytogenes, with minimum inhibitory concentration (MIC) values of 62.5 and 125 μmol L−1, respectively. For Gram-negative strains the results were 500 μmol L−1 for E. coli; and 1000 μmol L−1 for Salmonella enterica Typhimurium. Antifungal activity was performed against Candida albicans, where the MIC was 15.62 μmol L−1, and for C. tropicalis it was 62.5 μmol L−1. According to the MFC analysis, the complex presented, in addition to the fungistatic action, a fungicidal action, as there was no growth of fungi on the plates tested. The results found for the tests demonstrate that the VO(IV)-bis(abietate) complex has great potential as an antimicrobial and mainly antifungal agent. In this way, the pigmented ink with antimicrobial activity could be used in environments with a potential risk of contamination, preventing the spread of microorganisms harmful to health.
The synthesis of structured MgO is reported using feedstock starch (route I), citrus pectin (route II), and Aloe vera (route III) leaf, which are suitable for use as green fuels due to their abundance, low cost, and non-toxicity. The oxides formed showed high porosity and were evaluated as antimicrobial agents. The samples were characterized by energy-dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). The crystalline periclase monophase of the MgO was identified for all samples. The SEM analyses show that the sample morphology depends on the organic fuel used during the synthesis. The antibacterial activity of the MgO-St (starch), MgO-CP (citrus pectin), and MgO-Av (Aloe vera) oxides was evaluated against pathogens Staphylococcus aureus (ATCC 6538P) and Escherichia coli (ATCC 8739). Antifungal activity was also studied against Candida albicans (ATCC 64548). The studies were carried out using the qualitative agar disk diffusion method and quantitative minimum inhibitory concentration (MIC) tests. The MIC of each sample showed the same inhibitory concentration of 400 µg. mL−1 for the studied microorganisms. The formation of inhibition zones and the MIC values in the antimicrobial analysis indicate the effective antimicrobial activity of the samples against the test microorganisms.
In this study, two green synthesis routes were used for the synthesis of Ag/ZnO nanoparticles, using cassava starch as a simple and low-cost effective fuel and Aloe vera as a reducing and stabilizing agent. The Ag/ZnO nanoparticles were characterized and used for bacterial disinfection of lake water contaminated with Escherichia coli (E. coli). Characterization indicated the formation of a face-centered cubic structure of metallic silver nanoparticles with no insertion of Ag into the ZnO hexagonal wurtzite structure. Physicochemical and bacteriological analyses described in “Standard Methods for the Examination of Water and Wastewater” were used to evaluate the efficiency of the treatment. In comparison to pure ZnO, the synthesized Ag/ZnO nanoparticles showed high efficiencies against Escherichia coli (E. coli) and general coliforms present in the lake water. These pathogens were absent after treatment using Ag/ZnO nanoparticles. The results indicate that Ag/ZnO nanoparticles synthesized via green chemistry are a promising candidate for the treatment of wastewaters contaminated by bacteria, due to their facile preparation, low-cost synthesis, and disinfection efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.