A major issue with Schistosoma mansoni infection is the development of periportal fibrosis, which is predominantly caused by the host immune response to egg antigens. Experimental studies have pointed to the participation of monocytes in the pathogenesis of liver fibrosis. The aim of this study was to characterize the subsets of monocytes in individuals with different degrees of periportal fibrosis secondary to schistosomiasis. Monocytes were classified into classical (CD14++CD16−), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++). The expressions of monocyte markers and cytokines were assessed using flow cytometry. The frequency of classical monocytes was higher than the other subsets. The expression of HLA-DR, IL-6, TNF-α, and TGF-β was higher in monocytes from individuals with moderate to severe fibrosis as compared to other groups. Although no differences were observed in receptors expression (IL-4R and IL-10R) between groups of patients, the expression of IL-12 was lower in monocytes from individuals with moderate to severe fibrosis, suggesting a protective role of this cytokine in the development of fibrosis. Our data support the hypothesis that the three different monocyte populations participate in the immunopathogenesis of periportal fibrosis, since they express high levels of proinflammatory and profibrotic cytokines and low levels of regulatory markers.
Background: Asthma prevalence is 339 million globally. 'Severe asthma' (SA) comprises subjects with uncontrolled asthma despite proper management. Objectives: To compare asthma from diverse ethnicities and environments. Methods: A cross-sectional analysis of two adult cohorts, a Brazilian (ProAR) and a European (U-BIOPRED). U-BIOPRED comprised of 311 non-smoking with Severe Asthma (SAn), 110 smokers or ex-smokers with SA (SAs) and 88 mild to moderate asthmatics (MMA) while ProAR included 544 SA and 452 MMA. Although these projects were independent, there were similarities in objectives and methodology, with ProAR adopting operating procedures of U-BIOPRED. Results: Among SA subjects, age, weight, proportion of former smokers and FEV 1 pre-bronchodilator were similar. The proportion of SA with a positive skin prick tests (SPT) to aeroallergens, the scores of sino-nasal symptoms and quality of life were comparable. In addition, blood eosinophil counts (EOS) and the % of subjects with EOS > 300 cells/μl were not different. The Europeans with SA however, were more severe with a greater proportion of continuous oral corticosteroids (OCS), worse symptoms and more frequent exacerbations. FEV 1 /FVC pre-and post-bronchodilator were lower among the Europeans. The MMA cohorts were less comparable in control and treatment, but similar in the proportion of allergic rhinitis, gastroesophageal reflux disease and EOS >3%. Conclusions: ProAR and U-BIOPRED cohorts, with varying severity, ethnicity and environment have similarities, which provide the basis for global external validation of asthma phenotypes. This should stimulate collaboration between asthma consortia with the aim of understanding SA, which will lead to better management.
On March 11, 2020, the World Health Organization (WHO) officially declared the outbreak caused by the new coronavirus (SARS-CoV-2) a pandemic. The rapid spread of the disease surprised the scientific and medical community. Based on the latest reports, news, and scientific articles published, there is no doubt that the coronavirus has overloaded health systems globally. Practical actions against the recent emergence and rapid expansion of the SARS-CoV-2 require the development and use of tools for discovering new molecular anti-SARS-CoV-2 targets. Thus, this review presents bioinformatics and molecular modeling strategies that aim to assist in the discovery of potential anti-SARS-CoV-2 agents. Besides, we reviewed the relationship between SARS-CoV-2 and innate immunity, since understanding the structures involved in this infection can contribute to the development of new therapeutic targets. Bioinformatics is a technology that assists researchers in coping with diseases by investigating genetic sequencing and seeking structural models of potential molecular targets present in SARS-CoV2. The details provided in this review provide future points of consideration in the field of virology and medical sciences that will contribute to clarifying potential therapeutic targets for anti-SARS-CoV-2 and for understanding the molecular mechanisms responsible for the pathogenesis and virulence of SARS-CoV-2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.