Improving device performance and extending Moore's Law can be aided through active solid-state cooling, using thermoelectric (TE) materials with a high figure of merit (zT > 1). TE nanowires promise a path to higher zT, and electrochemical deposition (ECD) is a simple and scalable means for synthesizing TE nanowires. In this paper we report the ECD of 75 nm diameter nanowire arrays with a nominal composition of Bi 2 (Te 0.95 Se 0.05 ) 3 onto Si substrates. These nanowires show an improved level of compositional control than previously observed for TE nanowires in this system by ECD. This results from our new non-aqueous bath combined with recently described methods for template formation on Si.
A new Matlab-based software suite called Tilt-A-Whirl has been applied to XRD data from textured gold films electro-deposited onto nickel substrates. The software routines facilitate phase identification, texture analysis via pole figure visualization, and macrostrain determination. The use of principal component analysis with multivariate curve resolution (PCA/MCR) revealed the extraction of texture components. The unusual hardness properties of one Au film (deposited from a 30% gold depleted BDT-200 bath) were found to be dependent on the (210) out-of-plane preferred orientation of the polycrystalline gold film. The progressive nucleation of Au crystallites during electro-plating has been tied to improved hardness properties of this film.
Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented.[1] At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s).The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a review of previous literature on Sn whisker crystallography. The overall texture of the Sn films was also analyzed by EBSD. Finally, a short Appendix is included at the end of this report, in which the X-Ray diffraction (XRD) results are discussed and compared to the EBSD analyses of the overall textures of the Sn films. Sections 2, 3, and 4 have been or will be submitted as stand-alone papers in peer-reviewed technical journals. A bibliography of recent Sandia Sn whisker publications and presentations is included at the end of the report.
4
ACKNOWLEDGMENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.