Lithium metal anodes are critical enablers for high energy density next generation batteries, but they suffer from poor morphology control and parasitic reactions. Recent experiments have shown that an external packing force on Li metal batteries with liquid electrolytes extends their lifetimes by inhibiting the growth of dendritic structures during Li deposition. However, the mechanisms by which pressure affects dendrite formation and growth have not been fully elucidated. For
Slip in face centred cubic (fcc) metals is well documented to occur on {111} planes in n110m directions. In body centred cubic (bcc) metals, the slip direction is also well established to be n111m, but it is much less clear as to the slip planes on which dislocations move. Since plasticity in metals is governed by the collective motion and interaction of dislocations, the nature of the relevant slip planes is of critical importance in understanding and modelling plasticity in bcc metals. This review attempts to address two fundamental questions regarding the slip planes in bcc metals. First, on what planes can slip, and thus crystallographic rotation, be observed to occur, i.e. what are the effective slip planes? Second, on what planes do kinks form along the dislocation lines, i.e. what are the fundamental slip planes? We review the available literature on direct and indirect characterisation of slip planes from experiments, and simulations using atomistic models. Given the technological importance of bcc transition metals, this review focuses specifically on those materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.