Humans commanding and monitoring robots’ actions are used in various high-stress environments, such as the Predator or MQ-9 Reaper remotely piloted unmanned aerial vehicles. The presence of stress and potential costly mistakes in these environments places considerable demands and workload on the human supervisors, which can reduce task performance. Performance may be augmented by implementing an adaptive workload human–machine teaming system that is capable of adjusting based on a human’s workload state. Such a teaming system requires a human workload assessment algorithm capable of estimating workload along multiple dimensions. A multi-dimensional algorithm that estimates workload in a supervisory environment is presented. The algorithm performs well in emulated real-world environments and generalizes across similar workload conditions and populations. This algorithm is a critical component for developing an adaptive human–robot teaming system that can adapt its interactions and intelligently (re-)allocate tasks in dynamic domains.
Performing tasks quickly and accurately in dynamic and intense environments is critical, such as supervising a remotely piloted aircraft; however, these environments contain periods of low and high workload, which can decrease task performance. A system capable of intelligently adapting its interaction modality based on the human’s workload state may mitigate these undesirable workload states: underload and overload. Such a system requires mechanisms to determine accurately the human’s overall workload state and each workload component state (i.e., cognitive, physical, visual, speech, and auditory) in order to understand the current workload state’s underlying cause effectively. Existing work estimates multiple workload components, but no method estimates speech workload. This manuscript presents an algorithm for accurately estimating a human’s speech workload level using methods suitable for real-time workload assessment. The algorithm is an essential component to future adaptive human-machine interfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.