Intensive renal support in critically ill patients with acute kidney injury did not decrease mortality, improve recovery of kidney function, or reduce the rate of nonrenal organ failure as compared with less-intensive therapy involving a defined dose of intermittent hemodialysis three times per week and continuous renal-replacement therapy at 20 ml per kilogram per hour. (ClinicalTrials.gov number, NCT00076219.)
Optimal cellular function is dependent on maintenance of a normal serum phosphorus concentration. Serum phosphorus concentration is affected by several determinants, the most important of which is regulation of phosphorus reabsorption by the kidney. The majority of this reabsorption (80%) occurs in the proximal tubule and is mediated by an isoform of the sodium-phosphate cotransporter (NaPi-II). Parathyroid hormone, via a variety of intracellular signaling cascades leading to NaPi-IIa internalization and downregulation, is the main regulator of renal phosphate reabsorption. Shift of phosphorus from extracellular to intracellular compartments, decreased gastrointestinal absorption, and increased urinary losses, are the primary mechanisms of hypophosphatemia, which affects approximately 2% of hospitalized patients. Hypophosphatemia has been implicated as a cause of rhabdomyolysis, respiratory failure, hemolysis and left ventricular dysfunction. With the exception of ventilated patients, there is little evidence that moderate hypophosphatemia has significant clinical consequences in humans, and aggressive intravenous phosphate replacement is unnecessary. By contrast, patients with severe hypophosphatemia should be treated. Intravenous repletion may be considered, especially for patients who have clinical sequelae of hypophosphatemia.
Uremic bleeding syndrome is a recognized consequence of renal failure and can result in clinically significant sequelae. Although the pathophysiology of the condition has yet to be fully elucidated, it is believed to be multifactorial. This article is a review of both the normal hemostatic and homeostatic mechanisms that operate within the body to prevent unnecessary bleeding, as well as an in-depth discussion of the dysfunctional components that contribute to the complications associated with uremic bleeding syndrome. As a result of the multifactorial nature of this syndrome, prevention and treatment options can include one or a combination of the following: dialysis, erythropoietin, cryoprecipitate, desmopressin, and conjugated estrogens. Here, these treatment options are compared with regard to their mechanism of action, and onset and duration of efficacy. An extensive review of the clinical trials that have evaluated each treatment is also presented. Lastly, we have created an evidence-based treatment algorithm to help guide clinicians through most clinical scenarios, and answered common questions related to the management of uremic bleeding.
Both the kidney and bone contribute to the pathogenesis of hypercalciuria during high casein diet in rats. Hypocitraturia is probably renal in origin. This rat model will be useful in elucidating the mechanisms by which high protein intake increases the risk of nephrolithiasis and bone loss in human beings.
More than half of patients with acute renal failure in the intensive care unit require dialysis, and the majority of them have significant hemodynamic instability. Continuous renal replacement therapy (CRRT) is often the preferred dialysis modality in these patients. One requirement for CRRT is anticoagulation, which can expose patients to the risk of bleeding. However, absence of effective anticoagulation may result in clotting of the CRRT circuit and subsequently less effective treatment. While heparins are widely used for anticoagulation, because of potential side effects such as bleeding and heparin-induced thrombocytopenia, alternative anticoagulation protocols should be considered. Citrate anticoagulation, regional heparin/protamine, predilution, r-hirudin, prostacyclin, and nafamostat are among these methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.