Curved beams such as arches find ubiquitous applications in civil, mechanical and aerospace engineering, e.g., stiffened floors, fuselage, railway compartments, and wind turbine blades. The analysis of free vibrations of curved structures plays a critical role in their design to avoid transient loads with dominant frequencies close to their natural frequencies. One way to increase their applications and possibly make them lighter without sacrificing strength is to comprise them of Functionally Graded Materials (FGMs) that are composites with continuously varying material properties in one or more directions. In this thesis, we study free vibrations of FGM circular beams by using a logarithmic shear deformation theory that incorporates through-the-thickness logarithmic variation of the circumferential displacement, does not require a shear correction factor, and has a parabolic through-the-thickness distribution of the shear strain. The radial displacement of a point is assumed to depend only upon its CONTENTS
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.