The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people 1 , 2 . We report genome-wide data from 166 East Asians dating to 6000 BCE – 1000 CE and 46 present-day groups. Hunter-gatherers from Japan, the Amur River Basin, and people of Neolithic and Iron Age Taiwan and the Tibetan plateau are linked by a deeply-splitting lineage likely reflecting a Late Pleistocene coastal migration. We follow Holocene expansions from four regions. First, hunter-gatherers of Mongolia and the Amur River Basin have ancestry shared by Mongolic and Tungusic language speakers but do not carry West Liao River farmer ancestry contradicting theories that their expansion spread these proto-languages. Second, Yellow River Basin farmers at ~3000 BCE likely spread Sino-Tibetan languages as their ancestry dispersed both to Tibet where it forms up ~84% to some groups and to the Central Plain where it contributed ~59–84% to Han Chinese. Third, people from Taiwan ~1300 BCE to 800 CE derived ~75% ancestry from a lineage also common in modern Austronesian, Tai-Kadai and Austroasiatic speakers likely deriving from Yangtze River Valley farmers; ancient Taiwan people also derived ~25% ancestry from a northern lineage related to but different from Yellow River farmers implying an additional north-to-south expansion. Fourth, Yamnaya Steppe pastoralist ancestry arrived in western Mongolia after ~3000 BCE but was displaced by previously established lineages even while it persisted in western China as expected if it spread the ancestor of Tocharian Indo-European languages. Two later gene flows affected western Mongolia: after ~2000 BCE migrants with Yamnaya and European farmer ancestry, and episodic impacts of later groups with ancestry from Turan.
Domestication of horses fundamentally transformed long-range mobility and warfare1. However, modern domesticated breeds do not descend from the earliest domestic horse lineage associated with archaeological evidence of bridling, milking and corralling2–4 at Botai, Central Asia around 3500 bc3. Other longstanding candidate regions for horse domestication, such as Iberia5 and Anatolia6, have also recently been challenged. Thus, the genetic, geographic and temporal origins of modern domestic horses have remained unknown. Here we pinpoint the Western Eurasian steppes, especially the lower Volga-Don region, as the homeland of modern domestic horses. Furthermore, we map the population changes accompanying domestication from 273 ancient horse genomes. This reveals that modern domestic horses ultimately replaced almost all other local populations as they expanded rapidly across Eurasia from about 2000 bc, synchronously with equestrian material culture, including Sintashta spoke-wheeled chariots. We find that equestrianism involved strong selection for critical locomotor and behavioural adaptations at the GSDMC and ZFPM1 genes. Our results reject the commonly held association7 between horseback riding and the massive expansion of Yamnaya steppe pastoralists into Europe around 3000 bc8,9 driving the spread of Indo-European languages10. This contrasts with the scenario in Asia where Indo-Iranian languages, chariots and horses spread together, following the early second millennium bc Sintashta culture11,12.
The deep population history of East Asia remains poorly understood due to a lack of ancient DNA data and sparse sampling of present-day people. We report genome-wide data from 191 individuals from Mongolia, northern China, Taiwan, the Amur River Basin and Japan dating to 6000 BCE – 1000 CE, many from contexts never previously analyzed with ancient DNA. We also report 383 present-day individuals from 46 groups mostly from the Tibetan Plateau and southern China. We document how 6000-3600 BCE people of Mongolia and the Amur River Basin were from populations that expanded over Northeast Asia, likely dispersing the ancestors of Mongolic and Tungusic languages. In a time transect of 89 Mongolians, we reveal how Yamnaya steppe pastoralist spread from the west by 3300-2900 BCE in association with the Afanasievo culture, although we also document a boy buried in an Afanasievo barrow with ancestry entirely from local Mongolian hunter-gatherers, representing a unique case of someone of entirely non-Yamnaya ancestry interred in this way. The second spread of Yamnaya-derived ancestry came via groups that harbored about a third of their ancestry from European farmers, which nearly completely displaced unmixed Yamnaya-related lineages in Mongolia in the second millennium BCE, but did not replace Afanasievo lineages in western China where Afanasievo ancestry persisted, plausibly acting as the source of the early-splitting Tocharian branch of Indo-European languages. Analyzing 20 Yellow River Basin farmers dating to ∼3000 BCE, we document a population that was a plausible vector for the spread of Sino-Tibetan languages both to the Tibetan Plateau and to the central plain where they mixed with southern agriculturalists to form the ancestors of Han Chinese. We show that the individuals in a time transect of 52 ancient Taiwan individuals spanning at least 1400 BCE to 600 CE were consistent with being nearly direct descendants of Yangtze Valley first farmers who likely spread Austronesian, Tai-Kadai and Austroasiatic languages across Southeast and South Asia and mixing with the people they encountered, contributing to a four-fold reduction of genetic differentiation during the emergence of complex societies. We finally report data from Jomon hunter-gatherers from Japan who harbored one of the earliest splitting branches of East Eurasian variation, and show an affinity among Jomon, Amur River Basin, ancient Taiwan, and Austronesian-speakers, as expected for ancestry if they all had contributions from a Late Pleistocene coastal route migration to East Asia.
While classic models for the emergence of pastoral groups in Inner Asia describe mounted, horse-borne herders sweeping across the Eurasian Steppes during the Early or Middle Bronze Age (ca. 3000-1500 BCE), the actual economic basis of many early pastoral societies in the region is poorly characterized. In this paper, we use collagen mass fingerprinting and ancient DNA analysis of some of the first stratified and directly dated archaeofaunal assemblages from Mongolia's early pastoral cultures to undertake species identifications of this rare and highly fragmented material. Our results provide evidence for livestock-based, herding subsistence in Mongolia during the late 3rd and early 2nd millennia BCE. We observe no evidence for dietary exploitation of horses prior to the late Bronze Age, ca. 1200 BCE-at which point horses come to dominate ritual assemblages, play a key role in pastoral diets, and greatly influence pastoral mobility. In combination with the broader archaeofaunal record of Inner Asia, our analysis supports models for widespread changes in herding ecology linked to the innovation of horseback riding in Central Asia in the final 2nd millennium BCE. Such a framework can explain key broad-scale patterns in the movement of people, ideas, and material culture in Eurasian prehistory. Horse domestication is widely recognized as a key transformative event in human prehistory. The initial domestication of horses has been linked to major changes in human mobility and social organization, particularly in Inner Asia 1. Horses have also been invoked to explain continent-scale population movements, such as the spread
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.