In the recent times, there has been a lot of speculation related to advanced driver-assistance system (ADAS) which provides best driving experience for the drivers. ADAS technology helps to detect the unhealthy driving conditions which lead to road accidents today. Road accidents are basically caused due to distracted driving, over speeding, drink and drive, foggy weather, no proper headlights, or due to some object which suddenly trespasses the vehicle. Today the major advancements in ADAS include parking assistance, road traffic detection, object detection on highways, and lane detection. But the major risk limitation in ADAS system is the speed and time at which the object is detected and tracked. Several algorithms such as R-CNN, Fast R-CNN, and YOLO were used for effective object detection and tracking earlier, but sometimes, the system do fail to detect due the speed factor. Hence, the proposed work presents a novel approach called “A Real-Time Object Detection Framework for Advanced Driver Assistant Systems” by implementing the state-of-the-art object detection algorithm YOLOv5 which improves the speed in detection of object over real-time. This paper provides a comparison between other state-of-the-art object detectors such as YOLOv3 and YOLOv4. Comparison is done based on mean average precision (mAP) and frames per second (FPS) on three benchmark datasets collected as a part of research findings. YOLOv5 proves to be faster and 95% accurate than the other object detection algorithms in the comparison. This framework is used to build a mobile application called “ObjectDetect” which helps users make better decisions on the road. “ObjectDetect” consists of a simple user interface that displays alerts and warnings.
Trend analysis over Twitter offers organizations a fast and effective way of predicting the future trends. In the recent years, a wide range of indicators and methods were used for predicting the trend on Twitter with varying results, unfortunately most of the research focused only on the emerging trends which has gained long-term attention on the Twitter platform. This article depicts trend variations, i.e. to predict whether the trend on Twitter will gain attention or not in the next few hours. Hence a novel method called: “Twitter Trend Momentum (TTM)” is introduced for trend prediction which is the enhancement of a well-known stock market indicator called moving average convergence divergence (MACD). Reason analysis for trend variation is also carried out as an extension to the authors' research work. An evaluation of the framework showed the best results which are applied to build a real-time web application called “TwitTrend.” The application acts as a real-time update and recommendation system of top trends to users.
Option mining is an arising yet testing artificial intelligence function. It aims at finding the emotional states and enthusiastic substitutes of expounders associated with a discussion based on their suppositions, which are conveyed by various techniques of data. But there exist an abundance of intra and inter expression collaboration data that influences the feelings ofexpounders in a perplexing and dynamic manner. Step by step instructions to precisely and completely model convoluted associations is the critical issue of the field. To pervade this break, an innovative and extensive system for multimodal option mining framework called a “quantum-conscious multimodal option mining framework (QMF)”, is introduced. This uses numerical ceremoniousness of quantum hypothesis and a long transientmemory organization. QMF system comprise of a multiple-modal choice combination method roused by quantum obstruction hypothesis to catch the co- operations inside every expression and a solid feeble impact model motivated by quantum multimodal (QM) hypothesis to demonstrate the communications between nearby expressions. Broad examinations are led on two generally utilized conversational assessment datasets: the multimodal emotional lines dataset (MELD) and interactive emotional dyadic motion capture (IEMOCAP) datasets. The exploratory outcomes manifest that our methodology fundamentally outflanks a broadscope of guidelines and best in class models.
Twitter is considered as one of the world’s largest social networking sites which allow users to customize their public profile, connect with others and interact with connected users. The proposed work introduces a distributed real-time twitter sentiment analysis and visualization framework by implementing novel algorithms for twitter sentiment analysis called Emotion-Polarity-SentiWordNet. The framework is applied to build an interactive web application called “TwitSenti” which can benefit companies and other organizations in knowing the people’s sentiment towards the aspects such as brands, current events, etc., which in turn helps in quick decision-making and planning marketing strategies. The algorithm is validated against three existing classifiers and hence proved that Emotion-Polarity-SentiWordNet provides highest accuracy value of 85%. Also, the framework showed best scalability results when evaluated through web app as four node clusters, proves to be fast and can scale well with massive data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.