Sabicea species are used in the Amazon for treatment of fever and malaria, which suggests that its chemical constituents may have some effect on pain and inflammation. Phytochemical analysis of the hexane fraction obtained from the crude ethanol extract from Sabicea grisea var. grisea Cham. & Schltdl (Rubiaceae), an endemic plant in Brazil, resulted in the isolation of octacosanol. This study investigated the antinociceptive and anti-inflammatory effects of the octacosanol in different experimental models. The crude ethanolic extract and hexane fraction obtained from the leaves of S. grisea produced an inhibition of acetic acid-induced pain. Moreover, octacosanol isolated from the hexane fraction produced a significant inhibition of pain response elicited by acetic acid. Pre-treatment with yohimbine, an alpha 2-adrenergic receptor antagonist, notably reversed the antinociceptive activity induced by octacosanol in the abdominal constriction test. Furthermore, mice treated with octacosanol did not exhibit any behavioral alteration during the hot plate and rota-rod tests, indicating non-participation of the supraspinal components in the modulation of pain by octacosanol with no motor abnormality. In the formalin test, octacosanol did not inhibit the licking time in first phase (neurogenic pain), but significantly inhibited the licking time in second phase (inflammatory pain) of mice. The anti-inflammatory effect of octacosanol was evaluated using carrageenan-induced pleurisy. The octacosanol significantly reduced the total leukocyte count and neutrophils influx, as well as TNF-α levels in the carrageenan-induced pleurisy. This study revealed that the mechanism responsible for the antinociceptive and anti-inflammatory effects of the octacosanol appears to be partly associated with an inhibition of alpha 2-adrenergic transmission and an inhibition of pathways dependent on pro-inflammatory cytokines. Finally, these results demonstrated that the octacosanol from the leaves of S. grisea possesses antinociceptive and anti-inflammatory activities, which could be of relevance for the pharmacological control of pain and inflammatory processes.
(2015) The anti-hyperalgesic and anti-inflammatory profiles of p-cymene: Evidence for the involvement of opioid system and cytokines, Pharmaceutical Biology, 53:11, 1583-1590, DOI: 10.3109/13880209.2014 To link to this article: https://doi.org/10. 3109/13880209.2014.993040 Published online: 05 May 2015.Submit your article to this journal Objective: The objective of this study was to evaluate the antinociceptive and anti-inflammatory profiles of p-cymene (PC), a monocyclic monoterpene, and its possible mechanisms of action. Materials and methods: Mice treated acutely with PC (25, 50, or 100 mg/kg, i.p.) were screened for carrageenan-induced hyperalgesia and the inflammatory components of its cascade (30-180 min), carrageenan-induced pleurisy (4 h), and tail-flick test (1-8 h). Also, we observed the PC effect on the generation of nitric oxide by macrophages and the activation of neurons in the periaqueductal gray (PAG) by immunofluorescence.Results: PC reduced (p50.001) the hyperalgesia induced by carrageenan, TNF-a, dopamine, and PGE 2 . PC decrease total leukocyte migration (100 mg/kg: p50.01), neutrophils (50 and 100 mg/kg: p50.05 and 0.001), and TNF-a (25, 50, and 100 mg/kg: p50.01, 0.05, and 0.001, respectively), besides reducing NO production (p50.05) in vitro. PC produced antinociceptive effect in tail-flick test (p50.05), which was antagonized by naloxone, naltrindole, nor-BNI, and CTOP, and increased (p50.001) the number of c-Fos-immunoreactive neurons in PAG. Discussion and conclusion: These results provide information about the anti-hyperalgesic and anti-inflammatory properties of PC suggesting a possible involvement of the opioid system and modulating some pro-inflammatory cytokines.
Context: Propolis has promising biological activities. Propolis samples from the Northeast of Bahia, Brazil – sample A from Ribeira do Pombal and B, from Tucano – were investigated, with new information regarding their biological activities. Objective: This paper describes the chemical profile, antioxidant, anti-glycation and cytotoxic activities of these propolis samples. Material and methods: Ethanol extracts of these propolis samples (EEP) and their fractions were analyzed to determine total phenolic content (TPC); antioxidant capacity through DPPH•, FRAP and lipid peroxidation; anti-glycation activity, by an in vitro glucose (10 mg/mL) bovine serum albumine (1 mg/mL) assay, during 7 d; cytotoxic activity on cancer (SF295, HCT-116, OVCAR-8, MDA-MB435, MX-1, MCF7, HL60, JURKAT, MOLT-4, K562, PC3, DU145) and normal cell lines (V79) at 0.04–25 μg/mL concentrations, for 72 h. The determination of primary phenols by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and volatile organic compounds content by gas chromatography-mass spectrometry (GC-MS) were also performed. Results: The EEP polar fractions exhibited up to 90% protection against lipid peroxidation. The IC50 value for anti-glycation activity of EEP was between 16.5 and 19.2 μg/mL, close to aminoguanidine (IC50 = 7.7 μg/mL). The use of UHPLC-MS/MS and GC-MS allowed the identification of 12 bioactive phenols in the EEP and 24 volatile compounds, all already reported. Conclusions: The samples present good antioxidant/anti-glycation/cytotoxic activities and a plethora of biologically active compounds. These results suggest a potential role of propolis in targeting ageing and diseases associated with oxidative and carbonylic stress, aggregating value to them.
A multifunctional smart supramolecular platform based on a lanthanide-organic hydrogel is presented. This platform, which provides unique biocompatibility and tunable optical properties, is synthesized by a simple, fast, and reproducible eco-friendly microwave-assisted route. Photoluminescent properties enable the production of coated light-emitting diodes (LED), unique luminescent barcodes dependent on the excitation wavelength and thin-films for use in tamper seals. Moreover, piroxicam entrapped in hydrogel acts as a transdermal drug release device efficient in inhibiting edemas as compared to a commercial reference.
The present study aimed to elucidate the antinociceptive and anti-inflammatory properties of the methanol extract from the mycelium of the endophytic fungus Rhizoctonia sp. (MEMRh) in mice. The antinociceptive activity was assessed using the abdominal constriction, hot plate, and formalin tests. The anti-inflammatory activity was assessed using a murine model of paw edema. Intraperitoneal administration of MEMRh (0.1, 1, 10 and 100 mg/kg, i.p.) produced an inhibition of acetic acid-induced writhing in mice for at least 8 h. In addition, all doses tested of the methanol extract were able to prevent thermal nociception in the hot-plate test. Furthermore, treatment with MEMRh (10 mg/kg, i.p.) inhibited both the early and late phases of formalin-induced nociception. This antinociceptive effect exhibited by MEMRh in the formalin test was reversed by the systemic administration of naloxone. MEMRh produced inhibition in a carrageenan-induced edema model at a dose of 10 mg/kg. The same extract also displayed significant activity against a histamine- or PGE(2)-induced edema model. The experimental data demonstrated that MEMRh showed remarkable anti-inflammatory and antinociceptive activities. Further studies are warranted to define and isolate the active anti-inflammatory and antinociceptive components from this endophytic fungus, which may yield effective agents for the treatment of inflammatory disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.