Tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. We prove a complete set of kinematic formulae for such tensorial curvature measures on convex bodies and for their (nonsmooth) generalizations on convex polytopes. These formulae express the integral mean of the tensorial curvature measure of the intersection of two given convex bodies (resp. polytopes), one of which is uniformly moved by a proper rigid motion, in terms of linear combinations of tensorial curvature measures of the given convex bodies (resp. polytopes). We prove these results in a more direct way than in the classical proof of the principal kinematic formula for curvature measures, which uses the connection to Crofton formulae to determine the involved constants explicitly.Date: December 26, 2016. 2010 Mathematics Subject Classification. Primary: 52A20, 53C65; secondary: 52A22, 52A38, 28A75.
The tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. We prove a set of Crofton formulae for such tensorial curvature measures. These formulae express the integral mean of the tensorial curvature measures of the intersection of a given convex body with a uniform affine k-flat in terms of linear combinations of tensorial curvature measures of the given convex body. Here we first focus on the case where the tensorial curvature measures of the intersection of the given body with an affine flat is defined with respect to the affine flat as its ambient space. From these formulae we then deduce some new and also recover known special cases. In particular, we substantially simplify some of the constants that were obained in previous work on Minkowski tensors. In a second step, we explain how the results can be extended to the case where the tensorial curvature measure of the intersection of the given body with an affine flat is determined with respect to the ambient Euclidean space.2010 Mathematics Subject Classification. Primary: 52A20, 53C65; secondary: 52A22, 52A38, 28A75.
The tensorial curvature measures are tensor-valued generalizations of the curvature measures of convex bodies. On convex polytopes, there exist further generalizations some of which also have continuous extensions to arbitrary convex bodies. In a previous work, we obtained kinematic formulae for all (generalized) tensorial curvature measures. As a consequence of these results, we now derive a complete system of Crofton formulae for such (generalized) tensorial curvature measures. These formulae express the integral mean of the (generalized) tensorial curvature measures of the intersection of a given convex body (resp. polytope, or finite unions thereof) with a uniform affine k-flat in terms of linear combinations of (generalized) tensorial curvature measures of the given convex body (resp. polytope, or finite unions thereof). The considered generalized tensorial curvature measures generalize those studied formerly in the context of Crofton-type formulae, and the coefficients involved in these results are substantially less technical and structurally more transparent than in previous works. Finally, we prove that essentially all generalized tensorial curvature measures on convex polytopes are linearly independent. In particular, this implies that the Crofton formulae which we prove in this contribution cannot be simplified further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.