Recently, polymer-coated nanoparticles were proposed for enhanced oil recovery (EOR) due to their improved properties such as solubility, stability, stabilization of emulsions and low particle retention on the rock surface. This work investigated the potential of various polymer-coated silica nanoparticles (PSiNPs) as additives to the injection seawater for oil recovery. Secondary and tertiary core flooding experiments were carried out with neutral-wet Berea sandstone at ambient conditions. Oil recovery parameters of nanoparticles such as interfacial tension (IFT) reduction, wettability alteration and log-jamming effect were investigated. Crude oil from the North Sea field was used. The concentrated solutions of PSiNPs were diluted to 0.1 wt % in synthetic seawater. Experimental results show that PSiNPs can improve water flood oil recovery efficiency. Secondary recoveries of nanofluid ranged from 60% to 72% of original oil in place (OOIP) compared to 56% OOIP achieved by reference water flood. In tertiary recovery mode, the incremental oil recovery varied from 2.6% to 5.2% OOIP. The IFT between oil and water was reduced in the presence of PSiNPs from 10.6 to 2.5–6.8 mN/m, which had minor effect on EOR. Permeability measurements indicated negligible particle retention within the core, consistent with the low differential pressure observed throughout nanofluid flooding. Amott–Harvey tests indicated wettability alteration from neutral- to water-wet condition. The overall findings suggest that PSiNPs have more potential as secondary EOR agents than tertiary agents, and the main recovery mechanism was found to be wettability alteration.
Coreflooding experiments on aged Berea sandstone cores were performed to study the effect of divalent cations on the low-salinity-surfactant enhanced oil recovery (EOR). In the experiments where the core samples were aged for 4 weeks, replacement of a small amount of sodium with calcium in the injected low-salinity surfactant did not lead to higher tertiary recovery. However, the effects on wettability alteration and relative permeabilities were substantial. For the experiments with longer aging duration of 7 weeks, addition of calcium to the injected low salinity surfactant led to better oil recovery and the impact on wettability alteration was strong. Further addition of calcium led to lower oil recovery. Results of the injection experiments were discussed based on interfacial tension (IFT), surfactant adsorption, end-point relative permeabilities, and contact angles. A part of discussion was also dedicated to the effect of calcium on the secondary low-salinity water (LSW) injection. Although the oil recoveries by LSW injection in the absence and presence of calcium are similar, calcium causes late oil mobilization during low-rate LSW injection.
Extraction of oil trapped after primary and secondary oil production stages still poses many challenges in the oil industry. Therefore, innovative enhanced oil recovery (EOR) technologies are required to run the production more economically. Recent advances suggest renewed application of surfacefunctionalized nanoparticles (NPs) for oil recovery due to improved stability and solubility, stabilization of emulsions, and low retention on porous media. The improved surface properties make the NPs more appropriate to improve microscopic sweep efficiency of water flood compared to bare nanoparticles, especially in challenging reservoirs. However, the EOR mechanisms of NPs are not well understood. This work evaluates the effect of four types of polymer-functionalized silica NPs as additives to the injection water for EOR. The NPs were examined as tertiary recovery agents in water-wet Berea sandstone rocks at 60 °C. The NPs were diluted to 0.1 wt. % in seawater before injection. Crude oil was obtained from North Sea field. The transport of NPs though porous media, as well as nanoparticles interactions with the rock system, were investigated to reveal possible EOR mechanisms. The experimental results showed that functionalized-silica NPs can effectively increase oil recovery in water-flooded reservoirs. The incremental oil recovery was up to 14% of original oil in place (OOIP). Displacement studies suggested that oil recovery was affected by both interfacial tension reduction and wettability modification, however, the microscopic flow diversion due to pore plugging (log-jamming) and the formation of nanoparticle-stabilized emulsions were likely the relevant explanations for the mobilization of residual oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.