SummaryThe GGGGCC (G4C2) intronic repeat expansion within C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Intranuclear neuronal RNA foci have been observed in ALS and FTD tissues, suggesting that G4C2 RNA may be toxic. Here, we demonstrate that the expression of 38× and 72× G4C2 repeats form intranuclear RNA foci that initiate apoptotic cell death in neuronal cell lines and zebrafish embryos. The foci colocalize with a subset of RNA binding proteins, including SF2, SC35, and hnRNP-H in transfected cells. Only hnRNP-H binds directly to G4C2 repeats following RNA immunoprecipitation, and only hnRNP-H colocalizes with 70% of G4C2 RNA foci detected in C9ORF72 mutant ALS and FTD brain tissues. We show that expanded G4C2 repeats are potently neurotoxic and bind hnRNP-H and other RNA binding proteins. We propose that RNA toxicity and protein sequestration may disrupt RNA processing and contribute to neurodegeneration.
AbstractmiRNA-mediated repression in animals is dependent on the GW182 protein family. GW182 proteins are recruited to the miRNA repression complex through direct interaction with Argonaute proteins, and they function downstream to repress target mRNA. Here we demonstrate that in human and Drosophila melanogaster cells, the critical repressive features of both the N-terminal and C-terminal effector domains of GW182 proteins are Gly/Ser/Thr-Trp (G/S/TW) or Trp-Gly/ Ser/Thr (WG/S/T) motifs. These motifs, which are dispersed across both domains and act in an additive manner, function by recruiting components of the CCR 4-NOT deadenylation complex. A heterologous yeast polypeptide with engineered WG/S/T motifs acquired the ability to repress tethered mRNA and to interact with the CCR 4-NOT complex. These results identify previously unknown effector motifs functioning as important mediators of miRNA-induced silencing in both species, and they reveal that recruitment of the CCR 4-NOT complex by tryptophan-containing motifs acts downstream of GW182 to repress mRNA s, including inhibiting translation independently of deadenylation.MicroRNAs (miRNAs) are small, ~21-nt-long RNAs that post-transcriptionally regulate gene expression in eukaryotes. In animals, miRNAs bind to partially complementary sites in mRNAs, leading to translational repression and mRNA deadenylation and degradation [1][2][3][4] . miRNAs function as part of ribonucleoprotein complexes, miRNPs, with Argonaute (AGO) and GW182 family proteins being the crucial components. GW182s interact directly with AGO proteins and function downstream as effectors mediating mRNA repression. Hence, understanding the function of GW182 proteins is critical for understanding miRNAmediated repression.GW182 functional regions have been mapped in D. melanogaster and mammalian proteins. In D. melanogaster, three regions were found to repress tethered mRNA to a similar extent 5
RNA-binding proteins (RBPs) are key players in the post-transcriptional regulation of gene expression. Precise knowledge about their binding sites is therefore critical to unravel their molecular function and to understand their role in development and disease. Individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) identifies protein–RNA crosslink sites on a genome-wide scale. The high resolution and specificity of this method are achieved by an intramolecular cDNA circularization step that enables analysis of cDNAs that truncated at the protein–RNA crosslink sites. Here, we describe the improved iCLIP protocol and discuss critical optimization and control experiments that are required when applying the method to new RBPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.