Nonlinear vibrations of the orthotropic nanoplates subjected to an influence of in-plane magnetic field are considered. The model is based on the nonlocal elasticity theory. The governing equations for geometrically nonlinear vibrations use the von Kármán plate theory. Both the stress formulation and the Airy stress function are employed. The influence of the magnetic field is taken into account due to the Lorentz force yielded by Maxwell's equations. The developed approach is based on applying the Bubnov-Galerkin method and reducing partial differential equations to an ordinary differential equation. The effect of the magnetic field, elastic foundation, nonlocal parameter and plate aspect ratio on the linear frequencies and the nonlinear ratio is illustrated and discussed.
The first part of the paper was aimed at analyzing the given nonlinear problem by different methods of computation of the Lyapunov exponents (Wolf method [1], Rosenstein method [2], Kantz method [3], method based on the modification of a neural network [4, 5], and the synchronization method [6, 7]) for the classical problems governed by difference and differential equations (Hénon map [8], hyper-chaotic Hénon map [9], logistic map [10], Rössler attractor [11], Lorenz attractor [12]) and with the use of both Fourier spectra and Gauss wavelets [13]. It was shown that a modification of the neural network method [4, 5] makes it possible to compute a spectrum of Lyapunov exponents, and then to detect a transition of the system regular dynamics into chaos, hyper-chaos, hyper hyper-chaos and deep chaos [14-16]. Different algorithms for computation of Lyapunov exponents were validated by comparison with the known dynamical systems spectra of the Lyapunov exponents. The carried out analysis helps comparatively estimate the employed methods in order to choose the most suitable/optimal one to study different kinds of dynamical systems and different classes of problems in both this and the next paper parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.