Adaptive sampling using a neural network and a fuzzy regulator is described as applied to computer network traffics. The objective of this approach is to maximally reduce the amount of data to be processed with preservation of acceptable measurement accuracy. The results of experimental verification of sampling efficiency are also presented that are based on the traffic data archive of a real computer network.
Whilst mapping with UAVs has become an established tool for geodata acquisition in many domains, certain time-critical applications, such as crisis and disaster response, demand fast geodata processing pipelines rather than photogrammetric post-processing approaches. Based on our 3D-capable real-time mapping pipeline, this contribution presents not only an array of optimisations of the original implementation but also an extension towards understanding the image content with respect to land cover and object detection using machine learning. This paper (1) describes the pipeline in its entirety, (2) compares the performance of the semantic labelling and object detection models quantitatively and (3) showcases real-world experiments with qualitative evaluations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.