Die Frage der sicheren und sinnvollen Verankerung von textiler Bewehrung im Beton beschäftigt nicht nur Anwender des innovativen Verbundwerkstoffs Carbonbeton. Auch in der Forschung sind für die Thematik des Verbunds und der Verankerung wesentliche Fragen nicht abschließend geklärt. Bisher existiert kein Bemessungsmodell für die Verankerung oder Übergreifung, welches bei der derzeit verfügbaren Bandbreite textiler Bewehrungen mit weicher bis steifer Tränkung gleichermaßen gültig ist. Die unterschiedlichen Versagensmechanismen des Verbunds, die aus den Charakteristika der Materialien resultieren, werden selten klar unterschieden. Dieser Artikel verdeutlicht die Auswirkungen des Formschlusses auf das Verankerungsverhalten am Beispiel einer textilen Bewehrung mit steifer Tränkung und ordnet Ergebnisse von experimentellen Untersuchungen in die bisherige Forschung ein. Hierzu wird ein Prüfaufbau für einen Auszugversuch vorgestellt, welcher auch zur Abschätzung des Verankerungsverhaltens in Praxisprojekten und zur Qualitätskontrolle in der Produktion genutzt werden kann.
Der zunehmende Einsatz von Carbonbeton macht die Kenntnis der entsprechenden Materialkennwerte, v. a. das Verhalten unter Zugbeanspruchung, grundsätzlich erforderlich. Da bislang nur für wenige Bewehrungsmaterialien konkrete Bemessungskennwerte vorliegen, ist man häufig auf deren experimentelle Ermittlung angewiesen. Im Zuge der Weiterentwicklung der Materialien wurden in den vergangenen Jahren auch die Prüfmethoden wiederholt modifiziert. Die in einem gemeinsamen Forschungsprojekt von TU Dresden, RWTH Aachen und MFPA Leipzig erarbeitete Prüfempfehlung zur Bestimmung der Materialkennwerte bei Zugbeanspruchung von Textilbeton wird hier vorgestellt. Ergänzt sind praktische Empfehlungen zu Versuchsdurchführung und Vermeidung typischer Fehler sowie Hinweise zur Interpretation der Ergebnisse.
A reliable and economic utilization of textile-reinforced concrete in construction requires appropriate design concepts. Unlike designs for bending, the development of models for shear is still the subject of current research. Especially for thin slabs, systematic experimental investigations are lacking. In this paper, the results of an experimental campaign on 27 carbon-textile reinforced slab segments tested in three-point bending are presented. The shear-span to depth ratio and member size were key variation parameters in this study. Increasing the structural depth of members led to a reduction in relative shear strength, while variation of shear slenderness controlled the efficiency of direct stress fields between load introduction and support. Interestingly, direct load transfer was activated up to a shear slenderness ratio of 4, which is significantly higher than in reinforced concrete (a/d < 2.5–3) and may result from the bond characteristics of the textile reinforcement. The experimental shear strengths were compared to predictions from existing models for shear of fiber-reinforced polymer (FRP)-reinforced concrete. The study shows that these FRP calculation models also predict the ultimate shear force for textile-reinforced concrete (TRC) tests presented in this paper with sufficient accuracy. Existing approaches for the size effect seem transferable as well. In order to validate the models for general use in TRC shear design, a compilation and comparison with larger experimental databases is required in future works.
Despite intensive research on material properties of non-metallic technical textiles for internal reinforcement in concrete, the long-term durability is not yet fully understood. In this work, results of preloaded long-term durability tensile tests on carbon-reinforced concrete specimens under environmental factors of stress, temperature, moisture and alkalinity are presented. Based on investigations of non-metallic glass fiber reinforcements with polymer matrices, where strength losses occur over time, it was planned to derive a time to failure curve and to determine a reduction factor for the tensile strength of the carbon textile reinforcement. However, no loss of strength was discovered in residual capacity tests due to the high material resistance and therefore no reduction factor due to the environmental factors could be derived. After more than 5000 h of testing, the residual capacity tests showed an increase in the ultimate failure stress in comparison with the short-term tests. In addition to the long term-durability tests, the influence of the preloading was investigated. The preload was applied to the long-term tests and led to a straighter alignment and loading of the filaments and thus to an increase in the ultimate capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.