Indirect environmental effects of information and communication technology (ICT) are those effects of ICT that change patterns of production or consumption in domains other than ICT, or more precisely, the environmental consequences of these changes. Digitalization as the societal process of ICT-driven change has created increasing interest in the indirect environmental effects of this technology. Assessments of indirect effects face various methodological challenges, such as the definition of the system boundary, the definition of a baseline as a reference or the occurrence of rebound effects. Existing studies use various approaches or methods to assess a spectrum of ICT use cases in several application domains. In view of the large number of assessments that have been conducted, the choices made when applying assessment methods, and the variety of ICT use cases in different application domains investigated, we present a systematic literature review of existing assessments of indirect environmental effects of ICT. The review provides a state-of-the-art overview of the methods used in the research field and is intended to support researchers in designing sound assessments which yield significant results. We identified 54 studies in seven main application domains using 15 different assessment approaches. The most common application domains are virtual mobility (e.g., telecommuting), virtual goods (e.g., digital media), and smart transport (e.g., route optimization). Life-cycle assessment, partial footprint, and the "ICT enablement method" are the most common approaches. The major part of the assessments focuses on patterns of production (e.g., production of paper-based books vs. e-books), a smaller part on patterns of consumption (e.g., changes in media consumption). Based on these results, we identify as a research gap the investigation of ICT impacts on consumer behavior, which could, for example, focus on social practices, and account for the dynamic implications of change. Elaborating such an approach could provide valuable insights into ICT's impact on society and the resulting environmental consequences.
The digital transformation has direct and indirect effects on greenhouse gas (GHG) emissions. Direct effects are caused by the production, use and disposal of information and communication technology (ICT) hardware. Indirect effects include the changes to patterns of production and consumption in other domains. Studies quantifying both effects often conclude that net effects (indirect minus direct effects) can lead to a significant GHG emission reduction. We revisited a study by Accenture on ICT's GHG abatement potential in Switzerland by reassessing the main assumptions. Our results confirm that ICT has the potential to reduce GHG emissions in Switzerland, especially in the building, transport and energy domains. However, our results also suggest that the potential is smaller than anticipated and that exploiting this potential requires targeted action. Reasons for differences among these results (and the results of similar other studies) are: degrees of freedom in the assessment methodology, selection of ICT use cases, allocation of impacts to ICT, definition of the baseline, estimation of the environmental impact, prediction of the future adoption of use cases, estimation of rebound effects, interaction among use cases, and extrapolation from use case to societywide impacts. We suggest addressing these methodological challenges to improve comparability of results.
The digital transformation has direct and indirect effects on the environment. Direct effects are caused by the production, use and disposal of information and communication technology (ICT) hardware. Indirect effects include the changes to patterns of production and consumption enabled by ICT in other domains. Studies of indirect environmental effects of ICT often focus on individual applications domains and their use cases, which implies that these studies cannot capture systemic effects of ICT adoption. We argue that interaction among ICT use cases is crucial to explain systemic environmental effects of ICT. In order to capture these interactions, we suggest focusing on ICT impacts on individual lifestyles, in particular time use, because (i) time is a limited resource for everyone, a fact which makes time budget constraints a central link among different activities and (ii) many ICT use cases relax time and space constraints of individuals, thus changing time allocation. With this approach, we take into account that individual lifestyles are a major determinant of the overall environmental impact and that ICT diffusion changes individual time-use patterns and therefore lifestyles. Based on these considerations, we propose a conceptual framework that describes the causal mechanisms between ICT use, time-use patterns and environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.