Within an aging population, fracture incidences will rise and with the augmented risks of impaired healing the overall risk of delayed bone regeneration will substantially increase in elderly patients. Thus, new strategies to rescue fracture healing in the elderly are highly warranted. Modulating the initial inflammatory phase toward a reduced pro-inflammation launches new treatment options for delayed or impaired healing specifically in the elderly. Here, we evaluated the capacity of the prostacyclin analog Iloprost to modulate the inflammatory phase toward a pro-regenerative milieu using in vitro as well as in vivo model systems. In vitro , Iloprost administration led to a downregulation of potential unfavorable CD8+ cytotoxic T cells as well as their pro-inflammatory cytokine secretion profile. Furthermore, Iloprost increased the mineralization capacity of osteogenic induced mesenchymal stromal cells through both direct as well as indirect cues. In an in vivo approach, Iloprost, embedded in a biphasic fibrin scaffold, decreased the pro-inflammatory and simultaneously enhanced the anti-inflammatory phase thereby improving bone healing outcome. Overall, our presented data confirms a possible strategy to modulate the early inflammatory phase in aged individuals toward a physiological healing by a downregulation of an excessive pro-inflammation that otherwise would impair healing. Further confirmation in phase I/II trials, however, is needed to validate the concept in a broader clinical evaluation.
Carbon isotope fractionation of sulfamethoxazole (SMX) during biodegradation by Microbacterium sp. strain BR1 (ipso-hydroxylation) and upon direct photolysis was investigated. Carbon isotope signatures (δ(13)C) of SMX were measured by LC-IRMS (liquid chromatography coupled to isotope ratio mass spectrometry). A new LC-IRMS method for the SMX metabolite, 3-amino-5-methylisoxazole (3A5MI), was established. Carbon isotope enrichment factors for SMX (ε(C)) were -0.6 ± 0.1‰ for biodegradation and -2.0 ± 0.1‰ and -3.0 ± 0.2‰ for direct photolysis, at pH 7.4 and pH 5, respectively. The corresponding apparent kinetic isotope effects (AKIE) for ipso-hydroxylation were 1.006 ± 0.001; these fall in the same range as AKIE in previously studied hydroxylation reactions. The differences in SMX and 3A5MI fractionation upon biotic and abiotic degradation suggest that compound specific stable isotope analysis (CSIA) is a suitable method to distinguish SMX reaction pathways. In addition, the study revealed that the extent of isotope fractionation during SMX photolytic cleavage is pH-dependent.
Sulfamethoxazole (SMX) is a veterinary antibiotic that is not efficiently removed from wastewater by routine treatment and therefore can be detected widely in the environment. Here, we investigated whether microbial anaerobic transformation can contribute to the removal of SMX in constructed systems. We enriched SMX-transforming mixed cultures from sediment of a constructed wetland and from digester sludge of a wastewater treatment plant. Transformation of SMX was observed in both sulfate-reducing and methanogenic cultures, whereas nitrate-reducing cultures showed no SMX transformation. In sulfate-reducing cultures, up to 90% of an initial SMX concentration of 100–250 μM was removed within 6 weeks of incubation, and the experiments demonstrated that the transformation was microbially catalyzed. The transformation products in sulfate-reducing cultures were identified as the reduced and isomerized forms of the isoxazole SMX moiety. The transformation products did not spontaneously reoxidize to SMX after oxygen exposure, and their antibacterial activity was significantly decreased compared to SMX. Population analyses in sequential transfers of the sulfate-reducing cultures revealed a community shift toward the genus Desulfovibrio. We therefore tested a deposited strain of Desulfovibrio vulgaris Hildenborough for its capacity to transform SMX and observed the same transformation products and similar transformation rates as in the enrichment cultures. Our work suggests that an initial anaerobic step in wastewater treatment can reduce the concentration of SMX in effluents and could contribute to decreased SMX concentrations in the environment.
Microbial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans , dechlorinating tetrachloroethene (PCE) to cis −1,2-dichloroethene ( c DCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor. In co-cultures, the bacterial cells formed aggregates and D. mccartyi established an unusual, barrel-like morphology. An extracellular matrix surrounding bacterial cells in the aggregates enhanced cell-to-cell contact. PCE was dehalogenated to ethene at least three times faster in the co-culture. The dehalogenation was carried out via PceA of S. multivorans , and PteA (a recently described PCE dehalogenase) and VcrA of D. mccartyi BTF08, as supported by protein abundance. The co-culture was not dependent on exogenous hydrogen and acetate, suggesting a syntrophic relationship in which the obligate hydrogen consumer D. mccartyi consumes hydrogen and acetate produced by S. multivorans . The cobamide cofactor of the reductive dehalogenase—mandatory for D. mccartyi —was also produced by S. multivorans . D. mccartyi strain 195 dechlorinated c DCE in the presence of norpseudo-B 12 produced by S. multivorans , but D. mccartyi strain BTF08 depended on an exogenous lower cobamide ligand. This observation is important for bioremediation, since cofactor supply in the environment might be a limiting factor for PCE dehalogenation to ethene, described for D. mccartyi exclusively. The findings from this co-culture give new insights into aggregate formation and the physiology of D. mccartyi within a bacterial community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.