The study aims to reconstruct the crystalline parent rock assemblages of the Eocene Strihovce Formation (Krynica Unit) and Mrázovce Member (Rača Unit) deposits, based on the heavy mineral suites, their corrosive features, geochemistry of garnet and tourmaline, zircon cathodoluminescence (CL) images, and exotic pebble composition. Both units are an integral part of the Magura Nappe belonging to the Flysch Belt (Outer Western Carpathians). Corrosion signs observable on heavy minerals point to different burial conditions and/or diverse sources. The compositions of the detrital garnets and tourmalines as well as the CL study of zircons indicate their origin in gneisses, mica schists, amphibolites, and granites in the source area. According to observed petrographic and mineralogical characteristics, palaeoflow data and palaeogeographical situation during the Eocene may show that the Tisza Mega-Unit crystalline complexes including a segment of the flysch substratum could represent the lateral (southern) input of detritus for the Krynica Unit. The Rača Unit might have been fed from the northern source formed by the unpreserved Silesian Ridge. The Marmarosh Massif (coupled with the Fore-Marmarosh Suture Zone) is promoted to be a longitudinal source.
The provenance of the Proč and Strihovce sandstones is crucial for understanding the relationship between the Pieniny Klippen (PKB) and Flysch (FB) belts in the easternmost part of the Western Carpathian realm. Detrital Cr-spinels in these tectonic units were assertively interpreted as sourced from the southern sources representing the Meliata mélange. In this study, we use the geochemistry of detrital chromian spinels to identify the mafic and ultramafic source of the sediments and to compare them each other. Simultaneously, we compare their chemical compositions with those from the different Western Carpathian geological units, which could feed the Proč and Krynica basins during the Paleogene, where the Proč and Strihovce formations (fms), respectively, were deposited. Chromian spinels from the Proč and Strihovce fms exhibit similar geochemical characteristics (Cr# = 0.44–0.88 and 0.29–0.89, Mg# = 0.17–0.68 and 0.2–0.72, TiO2 = 0.0–3.67 and 0.01–2.08 wt.%, respectively). The spinels show both supra-subduction zone (SSZ) peridotite signatures and volcanic origin. Whereas volcanic spinels from the Proč Formation (Fm.) were formed under an ocean island basalt (OIB) and back-arc basin basalt (BABB) geodynamic setting, those from the Strihovce Fm. suggest a predominantly mid-ocean ridge basalt (MORB) origin. To avoid mistakes in the provenance interpretations, the data from garnet geochemistry of both formations is supplied. The analysed Cr-spinels do not absolutely overlap with spinels reported from the Meliata Unit, and their composition indicates at least two independent sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.