Background: Invasive ductal and lobular carcinomas (IDC and ILC) are the most common histological types of breast cancer. Clinical follow-up data and metastatic patterns suggest that the development and progression of these tumors are different. The aim of our study was to identify gene expression profiles of IDC and ILC in relation to normal breast epithelial cells.
The signaling pathway mediated by Wingless-type (Wnt) proteins is highly conserved in evolution. This pivotal pathway is known to regulate cell fate decisions, cell proliferation, morphology, migration, apoptosis, differentiation and stem cell self-renewal. It currently includes the canonical or Wnt/β-catenin pathway in which Wnt proteins bind to ‘frizzled’ receptors, which leads to downstream activation of gene transcription by β-catenin. Second, the noncanonical or β-catenin-independent pathways are now known to be mediated by three possible mechanisms: (1) the Wnt/Ca2+ pathway, (2) the Wnt/G protein signaling pathway, and (3) the Wnt/PCP or planar cell polarity pathway. Wnt signaling is implicated at several stages of mammary gland growth and differentiation, and possibly in the involution of mammary gland following lactation. Recent evidence suggests the role of Wnt signaling in human breast cancer involves elevated levels of nuclear and/or cytoplasmic β-catenin using immunohistochemistry, overexpression or downregulation of specific Wnt proteins, overexpression of CKII and sFRP4, downregulation of WIF-1 and sFRP1, as well as amplification of DVL-1. Further research is required to determine how Wnt signaling is involved in the development of different histological types of breast cancer and whether it promotes the viability of cancer stem cells or not.
Inhibitors of histone deacetylases have been approved for clinical application in cancer treatment. On the other hand, histone acetyltransferase (HAT) inhibitors have been less extensively investigated for their potential use in cancer therapy. In prostate cancer, the HATs and coactivators p300 and CBP are upregulated and may induce transcription of androgen receptor (AR)-responsive genes, even in the absence or presence of low levels of AR. To discover a potential anticancer effect of p300/CBP inhibition, we used two different approaches: (i) downregulation of p300 and CBP by specific short interfering RNA (siRNA) and (ii) chemical inhibition of the acetyltransferase activity by a newly developed small molecule, C646. Knockdown of p300 by specific siRNA, but surprisingly not of CBP, led to an increase of caspase-dependent apoptosis involving both extrinsic and intrinsic cell death pathways in androgendependent and castration-resistant prostate cancer cells. Induction of apoptosis was mediated by several pathways including inhibition of AR function and decrease of the nuclear factor kappa B (NF-kB) subunit p65. Furthermore, cell invasion was decreased upon p300, but not CBP, depletion and was accompanied by lower matrix metalloproteinase (MMP)-2 and MMP-9 transcriptions. Thus, p300 and CBP have differential roles in the processes of survival and invasion of prostate cancer cells. Induction of apoptosis in prostate cancer cells was confirmed by the use of C646. This was substantiated by a decrease of AR function and downregulation of p65 impairing several NF-kB target genes. Taken together, these results suggest that p300 inhibition may be a promising approach for the development of new anticancer therapies. Mol Cancer Ther; 10(9); 1644-55. Ó2011 AACR.
Tumors are not merely masses of neoplastic cells but complex tissues composed of cellular and noncellular elements. This review provides recent data on the main components of a dynamic system, such as carcinoma associated fibroblasts that change the extracellular matrix (ECM) topology, induce stemness and promote metastasis-initiating cells. Altered production and characteristics of collagen, hyaluronan and other ECM proteins induce increased matrix stiffness. Stiffness along with tumor growth-induced solid stress and increased interstitial fluid pressure contribute to tumor progression and therapy resistance. Second, the role of immune cells, cytokines and chemokines is outlined. We discuss other noncellular characteristics of the tumor microenvironment such as hypoxia and extracellular pH in relation to neoangiogenesis. Overall, full understanding of the events driving the interactions between tumor cells and their environment is of crucial importance in overcoming treatment resistance and improving patient outcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.