In Haskell, there are many data types that would form monads were it not for the presence of type-class constraints on the operations on that data type. This is a frustrating problem in practice, because there is a considerable amount of support and infrastructure for monads that these data types cannot use. Using several examples, we show that a monadic computation can be restructured into a normal form such that the standard monad class can be used. The technique is not specific to monads, and we show how it can also be applied to other structures, such as applicative functors. One significant use case for this technique is domain-specific languages, where it is often desirable to compile a deep embedding of a computation to some other language, which requires restricting the types that can appear in that computation.
Polymonads were recently introduced by Hicks et al. as a unified approach to programming with different notions of monads. Their work was mainly focused on foundational aspects of the approach. In this article, we show how to incorporate the notion of polymonads into Haskell, which is the first time this has been done in a full-scale language. In particular, we show how polymonads can be represented in Haskell, give a justification of the representation through proofs in Agda, and provide a plugin for the Glasgow Haskell Compiler (GHC) that enables their use in practice. Finally, we demonstrate the utility of our system by means of examples concerned with session types and the parameterized effect monad. This work provides a common representation of a number of existing approaches to generalized monads in Haskell.
Several popular generalizations of monads have been implemented in Haskell. Unfortunately, because the shape of the associated type constructors do not match the standard Haskell monad interface, each such implementation provides its own type class and versions of associated library functions. Furthermore, simultaneous use of different monadic notions can be cumbersome as it in general is necessary to be explicit about which notion is used where. In this paper we introduce supermonads: an encoding of monadic notions that captures several different generalizations along with a version of the standard library of monadic functions that work uniformly with all of them. As standard Haskell type inference does not work for supermonads due to their generality, our supermonad implementation is accompanied with a language extension, in the form of a plugin for the Glasgow Haskell Compiler (GHC), that allows type inference for supermonads, obviating the need for manual annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.