We present, to the best of our knowledge, the first attempt to exploit the super‐computer platform for quantum chemical density matrix renormalization group (QC‐DMRG) calculations. We have developed the parallel scheme based on the in‐house MPI global memory library, which combines operator and symmetry sector parallelisms, and tested its performance on three different molecules, all typical candidates for QC‐DMRG calculations. In case of the largest calculation, which is the nitrogenase FeMo cofactor cluster with the active space comprising 113 electrons in 76 orbitals and bond dimension equal to 6000, our parallel approach scales up to approximately 2000 CPU cores.
Recently, the correlation theory of the chemical bond was developed, which applies concepts of quantum information theory for the characterization of chemical bonds, based on the multiorbital correlations within the molecule. Here for the first time, we extend the use of this mathematical toolbox for the description of electron-deficient bonds. We start by verifying the theory on the textbook example of a molecule with three-center two-electron bonds, namely the diborane(6). We then show that the correlation theory of the chemical bond is able to properly describe bonding situation in more exotic molecules which have been synthetized and characterized only recently, in particular the diborane molecule with four hydrogen atoms [diborane(4)] and neutral zerovalent s-block beryllium complex, whose surprising stability was attributed to a strong three-center twoelectron π bond stretching across the C-Be-C core. Our approach is of a high importance especially in the light of a constant chase after novel compounds with extraordinary properties where the bonding is expected to be unusual.
There are three essential problems in computational relativistic chemistry: electrons moving at relativistic speeds, close lying states and dynamical correlation. Currently available quantum-chemical methods are capable of solving systems with one or two of these issues. However, there is a significant class of molecules, in which all the three effects are present. These are the heavier transition metal compounds, lanthanides and actinides with open d or f shells. For such systems, sufficiently accurate numerical methods are not available, which hinders the application of theoretical chemistry in this field. In this paper, we combine two numerical methods in order to address this challenging class of molecules. These are the relativistic versions of coupled cluster methods and density matrix renormalization group (DMRG) method. To the best of our knowledge, this is the first relativistic implementation of the coupled cluster method externally corrected by DMRG. The method brings a significant reduction of computational costs, as we demonstrate on the system of TlH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.