Previous studies have demonstrated that stable and adaptive attention processes are mediated by partly overlapping, but distinct, brain areas. Dorsal medial PFC and anterior insula may form a "core network" for attention control, which is believed to operate on both temporal scales. However, both the existence of such a network as well as the unique functional topography for adaptive and stable attention processes is still highly debated. In this study, 87 healthy participants performed a clinical not-X continuous performance test optimized for use in a mixed block and event-related fMRI design. We observed overlapping activations related to stable and adaptive attention processes in dorsal medial PFC and anterior insula/adjacent cortex as well as in the right inferior parietal lobe and middle temporal gyrus. We also identified areas of activations uniquely related to stable and adaptive attention processes in widespread cortical, cerebellar, and subcortical areas. Interestingly, the functional topography within the PFC indicated a rostro-caudal distribution of adaptive, relative to stable, attention processes. There was also evidence for a time-on-task effect for activations related to stable, but not adaptive, attention processes. Our results provide further evidence for a "core network" for attention control that is accompanied by unique areas of activation involved in domain-specific processes operating on different temporal scales. In addition, our results give new insights into the functional topography of stable and adaptive attention processes and their temporal dynamics in the context of an extensively used clinical attention test.
This study investigated how the neuronal underpinnings of both adaptive and stable cognitive control processes are affected by traumatic brain injury (TBI). Functional magnetic resonance imaging (fMRI) was undertaken in 62 survivors of moderate-to-severe TBI (>1 year after injury) and 68 healthy controls during performance of a continuous performance test adapted for use in a mixed block- and event-related design. Survivors of TBI demonstrated increased reliance on adaptive task control processes within an a priori core region for cognitive control in the medial frontal cortex. TBI survivors also had increased activations related to time-on-task effects during stable task-set maintenance in right inferior parietal and prefrontal cortices. Increased brain activations in TBI survivors had a dose-dependent linear positive relationship to injury severity and were negatively correlated with self-reported cognitive control problems in everyday-life situations. Results were adjusted for age, education, and fMRI task performance. In conclusion, evidence was provided that the neural underpinnings of adaptive and stable control processes are differently affected by TBI. Moreover, it was demonstrated that increased brain activations typically observed in survivors of TBI might represent injury-specific compensatory adaptations also utilized in everyday-life situations.
This study investigated whether treatment naïve adults with Attention Deficit Hyperactivity Disorder (ADHD; n = 33; 19 female) differed from healthy controls (n = 31; 17 female) in behavioral performance, event-related potential (ERP) indices of preparatory attention (CueP3 and late CNV), and reactive response control (Go P3, NoGo N2, and NoGo P3) derived from a visual cued Go/NoGo task. On several critical measures, Cue P3, late CNV, and NoGo N2, there were no significant differences between the groups. This indicated normal preparatory processes and conflict monitoring in ADHD patients. However, the patients had attenuated Go P3 and NoGoP3 amplitudes relative to controls, suggesting reduced allocation of attentional resources to processes involved in response control. The patients also had a higher rate of Go signal omission errors, but no other performance decrements compared with controls. Reduced Go P3 and NoGo P3 amplitudes were associated with poorer task performance, particularly in the ADHD group. Notably, the ERPs were not associated with self-reported mood or anxiety. The results provide electrophysiological evidence for reduced effortful engagement of attentional resources to both Go and NoGo signals when reactive response control is needed. The absence of group differences in ERP components indexing proactive control points to impairments in specific aspects of cognitive processes in an untreated adult ADHD cohort. The associations between ERPs and task performance provided additional support for the altered electrophysiological responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.