3D atomistic simulations via molecular dynamics (MD) at temperature of 0 K and 295 K (22°C) with a high quasi-static loading rate dP/dt of 2.92 kN/s show that cleavage fracture is supported by surface emission of oblique dislocations < 111 >{011} and by their subsequent cross slip to {112} planes, which increases separation of the (001) cleavage planes inside the crystal. Under the slower loading rate by a factor 5, the crack growth is hindered by twin generation on oblique planes {112} and the fracture is ductile. The MD results explain the contribution of the crack itself to the ductile-brittle transition observed in our fracture experiments on Fe-3wt%Si single crystals of the same orientation and geometry, loaded at the same rates dP/dt as in MD. The loading rates are equivalent to the cross head speed of 5 mm/min and 1 mm/min used in the experiment. The MD results also agree with the stress analysis performed by the anisotropic LFM and comply with experimental observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.