Recent reports on local extinctions of arthropod species1 and of massive declines in arthropod biomass 2 point to land-use intensification as a major driver of decreasing biodiversity. However, there are no multi-site time-series of arthropod occurrences across land-use intensity gradients to confirm causal relationships. Moreover, it remains unclear which land-use types and arthropod groups are affected and whether the observed declines in biomass and diversity are linked to one another and continue. Here we analyzed arthropod data on more than 1 million individuals and 2,700 species from standardized inventories from 2008 to 2017 at 150 grassland and 140 forest sites in three regions of Germany. Overall gamma diversity in grasslands and forests decreased over time indicating loss of species across sites and regions. In annually sampled grasslands, biomass, abundance and species number of arthropods declined by 67%, 78%, and 34%, respectively. The decline was consistent across trophic levels, mainly affected rare species, and its magnitude was independent of local land-use intensity. However, sites embedded in landscapes with higher cover of agricultural land showed a stronger temporal decline. In 30 forest sites with annual inventories, biomass and species number, but not abundance, decreased by 41% and 36%, respectively. This was supported by analyses of all forest sites sampled in 3year intervals. The decline affected rare and abundant species and trends differed across trophic levels. Our results show that there are widespread declines in arthropods that concern biomass, abundance and diversity across trophic levels. Declines in forests demonstrate that arthropod loss is not restricted to open habitats. Our results 4 suggest that major drivers of arthropod decline act at larger spatial scales, and are, at least for grasslands, associated with agriculture at the landscape level.This implies that land-use relevant policies need to address the landscape scale to mitigate negative effects of land-use practices. Main textMuch of the debate on the human-induced biodiversity crisis has focused on vertebrates 3 , yet population decline and extinctions may be even more substantial in small organisms such as terrestrial arthropods 4 . Recent studies report declines in biomass of flying insects 2 , diversity of insect pollinators 5,6 , butterflies and moths 1,7-10 , hemipterans 11,12 and beetles 7,13,14 . Owing to the associated negative effects on food webs 15 , ecosystem functioning and ecosystem services 16 , the insect loss has spurred an intense public debate. However, time-series data on arthropods are rather limited and studies have so far focused on a small range of taxa 11,13,14 , few land-use and habitat types 12 or even on single sites 1,17 . In addition, many studies lack species information 2 or high temporal resolution 2,12 . Hence, it remains unclear whether reported declines in arthropods are a general phenomenon that is driven by similar mechanisms across land-use types, taxa and functional groups.The ...
Biodiversity is not homogenously distributed over the globe, and ecosystems differ strongly in the number of species they provide. With this special issue we highlight the ecology and endangerment of one of the most diverse ecosystem of Europe: the European grassland ecosystems. The selected 16 contributions describe interactions from below-ground to the atmosphere and focus on (1) effects of abiotic and biotic on species diversity, (2) the impact of various factors along spatial and temporal gradients, (3) the
Recently, many new (extant) mammal species have been named, mostly by raising subspecies to species rank. This is primarily a consequence of the phylogenetic species concept (PSC) that has become very popular over the last few decades. We highlight several cases of splitting and argue that much of this taxonomic inflation is artificial due to shortcomings of the PSC and unjustified reliance on insufficient morphological and/or genetic data. We particularly discourage species splitting based on gene trees inferred from mitochondrial DNA only and phenetic analyses aimed at diagnosability. Uncritical acceptance of new species creates an unnecessary burden on the conservation of biodiversity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.