We present an ab initio study of the role of interference effects in the thermal conductance of single-molecule junctions. To be precise, using a first-principles transport method based on density functional theory, we analyze the coherent phonon transport in single-molecule junctions made of several benzene and oligo-phenylene-ethynylene derivatives. We show that the thermal conductance of these junctions can be tuned via the inclusion of substituents, which induces destructive interference effects and results in a decrease of the thermal conductance with respect to the unmodified molecules. In particular, we demonstrate that these interference effects manifest as antiresonances in the phonon transmission, whose energy positions can be tuned by varying the mass of the substituents. Our work provides clear strategies for the heat management in molecular junctions and more generally in nanostructured metal-organic hybrid systems, which are important to determine, how these systems can function as efficient energy-conversion devices such as thermoelectric generators and refrigerators.
Motivated by recent experiments, we present here an ab initio study of the impact of the phonon transport on the thermal conductance and thermoelectric figure of merit of C60-based single-molecule junctions. To be precise, we combine density functional theory with nonequilibrium Green's function techniques to compute these two quantities in junctions with either a C60 monomer or a C60 dimer connected to gold electrodes, taking into account the contributions of both electrons and phonons. Our results show that for C60 monomer junctions phonon transport plays a minor role in the thermal conductance and, in turn, in the figure of merit, which can reach values on the order of 0.1, depending on the contact geometry. In C60 dimer junctions, phonons are transported less efficiently, but they completely dominate the thermal conductance and reduce the figure of merit as compared to monomer junctions. Thus, claims that by stacking C60 molecules one could achieve high thermoelectric performance, which have been made without considering the phonon contribution, are not justified. Moreover, we analyze the relevance of near-field thermal radiation for the figure of merit of these junctions within the framework of fluctuational electrodynamics. We conclude that photon tunneling can be another detrimental factor for the thermoelectric performance, which has been overlooked so far in the field of molecular electronics. Our study illustrates the crucial roles that phonon transport and photon tunneling can play, when critically assessing the performance of molecular junctions as potential nanoscale thermoelectric devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.