International audienceFlood exposure is increasing in coastal cities1, 2 owing to growing populations and assets, the changing climate3, and subsidence4, 5, 6. Here we provide a quantification of present and future flood losses in the 136 largest coastal cities. Using a new database of urban protection and different assumptions on adaptation, we account for existing and future flood defences. Average global flood losses in 2005 are estimated to be approximately US6 billion per year, increasing to US52 billion by 2050 with projected socio-economic change alone. With climate change and subsidence, present protection will need to be upgraded to avoid unacceptable losses of US1 trillion or more per year. Even if adaptation investments maintain constant flood probability, subsidence and sea-level rise will increase global flood losses to US60-63 billion per year in 2050. To maintain present flood risk, adaptation will need to reduce flood probabilities below present values. In this case, the magnitude of losses when floods do occur would increase, often by more than 50%, making it critical to also prepare for larger disasters than we experience today. The analysis identifies the cities that seem most vulnerable to these trends, that is, where the largest increase in losses can be expected
This paper presents a first estimate of the exposure of the world's large port cities (population exceeding one million inhabitants in 2005) to coastal flooding due to sea-level rise and storm surge now and in the 2070s, taking into account scenarios of socio-economic and climate changes. The analysis suggests that about 40 million people (0.6% of the global population or roughly 1 in 10 of the total port city population in the cities considered) are currently exposed to a 1 in 100 year coastal flood event. For assets, the total value exposed in 2005 across all cities considered is estimated to be US$3,000 billion; corresponding to around 5% of global GDP in 2005 (both measured in international USD) with USA, Japan and the Netherlands being (2011) 104:89-111 the countries with the highest values. By the 2070s, total population exposed could grow more than threefold due to the combined effects of sea-level rise, subsidence, population growth and urbanisation with asset exposure increasing to more than ten times current levels or approximately 9% of projected global GDP in this period. On the global-scale, population growth, socio-economic growth and urbanization are the most important drivers of the overall increase in exposure particularly in developing countries, as low-lying areas are urbanized. Climate change and subsidence can significantly exacerbate this increase in exposure. Exposure is concentrated in a few cities: collectively Asia dominates population exposure now and in the future and also dominates asset exposure by the 2070s. Importantly, even if the environmental or socio-economic changes were smaller than assumed here the underlying trends would remain. This research shows the high potential benefits from risk-reduction planning and policies at the city scale to address the issues raised by the possible growth in exposure.
Article 2 ͉ UNFCCC ͉ climate change impacts A rticle 2 of the United Nations Framework Convention on Climate Change (UNFCCC) commits signatory nations to stabilizing greenhouse gas concentrations in the atmosphere at a level that ''would prevent dangerous anthropogenic interference (DAI) with the climate system.'' The UNFCCC also highlights 3 broad metrics with which decision-makers are to assess the pace of progress toward this goal: allow ''ecosystems to adapt naturally to climate change,'' ensure that ''food production is not threatened,'' and enable ''economic development to proceed in a sustainable manner.'' In an effort to provide some insight into impacts that might be considered DAI, authors of the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC) identified 5 ''reasons for concern'' (RFCs) in (1). Each RFC categorizes impacts of a similar type, providing a set of metrics reflecting severity of risk. Relationships between various impacts reflected in each RFC and increases in global mean temperature (GMT) were portrayed in what has come to be called the ''burning embers diagram''; the image was also included in the Summary for Policy Makers of the contribution of Working Group II to the TAR and highlighted in the Synthesis Report.In presenting the ''embers'' in the TAR, IPCC authors did not assess whether any single RFC was more important than any other; nor, as they noted, did they conclude what level of impact or what atmospheric concentrations of greenhouse gases would constitute DAI, a value judgment that would be policyprescriptive. The ''embers'' were designed primarily to communicate the associations of impacts with increases in GMT and facilitate examination of the underlying evidence for use by decision-makers contemplating responses to these concerns.The IPCC Fourth Assessment Report (AR4) states that ''the 'reasons for concern' identified in the TAR remain a viable framework for assessing key vulnerabilities'' (2). In this article, we revise sensitivities of the RFCs to increases in GMT, based on our expert judgment about new findings in the growing literature since the publication of the TAR in 2001.* Furthermore, our judgments are supported by a more thorough understanding of the concept of vulnerability that has evolved over the past 8 years, † as well as a more careful articulation of the criteria by which any specific vulnerability can be labeled ''key,'' and thus contribute to a reason for concern (3). ‡ Section 1 defines and reviews the RFCs and ''burning embers'' figure as presented in the IPCC TAR. Section 2 presents the 1 To whom correspondence may be addressed. E-mail: jsmith@stratusconsulting.com or shs@stanford.edu. *These judgments were vetted by 3 rounds of IPCC review and were approved in the Summary for Policymakers of both the AR4 Working Group 2 and Synthesis Reports by the IPCC Plenary. † Vulnerability to climate change is the degree to which geophysical, biological and socioeconomic systems are susceptible to and unable to cope with adve...
International audienceDespite a flurry of activity in cities on climate change and growing interest in the research community, climate policy at city-scale remains fragmented and basic tools to facilitate good decision-making are lacking. This paper draws on an interdisciplinary literature review to establish a multilevel risk governance conceptual framework. It situates the local adaptation policy challenge and action within this to explore a range of institutional questions associated with strengthening local adaptation and related functions of local government. It highlights the value of institutional design to include analytic-deliberative practice, focusing on one possible key tool to support local decision-making-that of boundary organizations to facilitate local science-policy assessment. After exploring a number of examples of boundary organisations in place today, the authors conclude that a number of institutional models are valid. A common feature across the different approaches is the establishment of a science-policy competence through active deliberation and shared analysis engaging experts and decision-makers in an iterative exchange of information. Important features that vary include the geographic scope of operation and the origin of funding, the level and form of engagement of different actors, and the relationship with "producers" of scientific information. National and sub-national (regional) governments may play a key role to provide financial and technical assistance to support the creation of such boundary organizations with an explicit mandate to operate at local levels; in turn, in a number of instances boundary organizations have been shown to be able to facilitate local partnerships, engagement and decision-making on adaptation. While the agenda for multi-level governance of climate change is inevitably much broader than this, first steps by national governments to work with sub-national governments, urban authorities and other stakeholders to advance capacity in this area could be an important step for local adaptation policy agenda
This study illustrates a methodology to assess the economic impacts of climate change at a city scale and benefits of adaptation, taking the case of sea level rise and storm surge risk in the city of Copenhagen, capital of Denmark. The approach is a simplified catastrophe risk assessment, to calculate the direct costs of storm surges under scenarios of sea level rise, coupled to an economic input-output (IO) model. The output is a risk assessment of the direct and indirect economic impacts of storm surge under climate change, including, for example, production and job losses and reconstruction duration, and the benefits of investment in upgraded sea defences. The simplified catastrophe risk assessment entails a statistical analysis of storm surge characteristics, geographical-information analysis of population and asset exposure combined with aggregated vulnerability information. For the city of Copenhagen, it is found that in absence of adaptation, sea level rise would significantly increase flood risks. Results call for the introduction of adaptation in long-term urban planning, as one part of a comprehensive strategy to manage the implications of climate change in the city. Mitigation policies can also aid adaptation by limiting the pace of future sea level rise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.