Cyfluthrin is a pyrethroid insecticide and common household pesticide. The effect of cyfluthrin on Ca2+-related physiology in human osteosarcoma is unclear. This study investigated the effect of cyfluthrin on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability in MG63 human osteosarcoma cells. Cyfluthrin concentration-dependently induced [Ca2+]i rises. Cyfluthrin-induced Ca2+ entry was confirmed by the Mn2+-induced quench of fura-2 fluorescence. Cyfluthrin at concentrations of 10–100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 50%. Cyfluthrin (100 μM) induced Mn2+ influx suggesting Ca2+ entry. Cyfluthrin-induced Ca2+ entry was inhibited 50% by protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) and inhibitor (GF109203X) and also by three inhibitors of store-operated Ca2+ channels: nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) completely inhibited cyfluthrin-evoked [Ca2+]i rises. Conversely, treatment with cyfluthrin abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with 1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dion abolished cyfluthrin-induced [Ca2+]i rises. Cyfluthrin at 25–65 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid–acetoxymethyl ester. Together, in MG63 cells, cyfluthrin induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Cyfluthrin also caused Ca2+-independent cell death.
The effect of the natural product diindolylmethane (DIM) on cytosolic Ca(2+) concentrations ([Ca(2+)]i) and viability in MDCK renal tubular cells was explored. The Ca(2+)-sensitive fluorescent dye fura-2 was applied to measure [Ca(2+)]i. DIM at concentrations 1-50 μM induced a [Ca(2+)]i rise in a concentration-dependent manner. The response was reduced partly by removing Ca(2+). DIM induced Mn(2+) influx leading to quenching of fura-2 fluorescence. DIM-evoked Ca(2+) entry was suppressed by nifedipine, econazole, SK&F96365 and protein kinase C modulators. In the absence of extracellular Ca(2+), incubation with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) greatly inhibited DIM-induced [Ca(2+)]i rise. Incubation with DIM abolished TG or BHQ-induced [Ca(2+)]i rise. Inhibition of phospholipase C with U73122 reduced DIM-induced [Ca(2+)]i rise by 50%. At 1, 10, 40 and 50 μM, DIM slightly enhanced cell proliferation. The effect of 50 μM DIM was reversed by chelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid. In sum, in MDCK cells, DIM induced a [Ca(2+)]i rise by evoking phospholipase C-dependent Ca(2+) release from the endoplasmic reticulum and Ca(2+) entry via protein kinase C-sensitive store-operated Ca(2+) channels. DIM did not induce cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.