Cyfluthrin is a pyrethroid insecticide and common household pesticide. The effect of cyfluthrin on Ca2+-related physiology in human osteosarcoma is unclear. This study investigated the effect of cyfluthrin on cytosolic-free Ca2+ concentrations ([Ca2+]i) and viability in MG63 human osteosarcoma cells. Cyfluthrin concentration-dependently induced [Ca2+]i rises. Cyfluthrin-induced Ca2+ entry was confirmed by the Mn2+-induced quench of fura-2 fluorescence. Cyfluthrin at concentrations of 10–100 μM induced [Ca2+]i rises. Ca2+ removal reduced the signal by approximately 50%. Cyfluthrin (100 μM) induced Mn2+ influx suggesting Ca2+ entry. Cyfluthrin-induced Ca2+ entry was inhibited 50% by protein kinase C (PKC) activator (phorbol 12-myristate 13-acetate) and inhibitor (GF109203X) and also by three inhibitors of store-operated Ca2+ channels: nifedipine, econazole, and SKF96365. In Ca2+-free medium, treatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin (TG) completely inhibited cyfluthrin-evoked [Ca2+]i rises. Conversely, treatment with cyfluthrin abolished TG-evoked [Ca2+]i rises. Inhibition of phospholipase C (PLC) with 1-[6-[((17β)-3-methoxyestra-1,3,5[10]-trien-17-yl)amino]hexyl]-1H-pyrrole-2,5-dion abolished cyfluthrin-induced [Ca2+]i rises. Cyfluthrin at 25–65 μM decreased cell viability, which was not reversed by pretreatment with the Ca2+ chelator 1,2-bis(2-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid–acetoxymethyl ester. Together, in MG63 cells, cyfluthrin induced [Ca2+]i rises by evoking PLC-dependent Ca2+ release from the endoplasmic reticulum and Ca2+ entry via PKC-sensitive store-operated Ca2+ entry. Cyfluthrin also caused Ca2+-independent cell death.
Amitriptyline is a widely used tricyclic antidepressant, which acts primarily as a serotonin-norepinephrine reuptake inhibitor. This study examined the effect of amitriptyline on Ca homeostasis and its related mechanism in MG63 human osteosarcoma cells. Amitriptyline evoked cytosolic-free Ca concentrations ([Ca]) rises concentration dependently. Amitriptyline-evoked Ca entry was confirmed by Mn-induced quench of fura-2 fluorescence. This entry was inhibited by Ca entry modulators nifedipine, econazole, SKF96365, the protein kinase C (PKC) activator phorbol 12-myristate 13 acetate but was not affected by the PKC inhibitor GF109203X. In Ca-free medium, treatment with the endoplasmic reticulum Ca pump inhibitor thapsigargin (TG) inhibited amitriptyline-evoked [Ca] rises by 95%. Conversely, treatment with amitriptyline abolished TG-evoked [Ca] rises. Inhibition of phospholipase C (PLC) with U73122 inhibited amitriptyline-evoked [Ca] rises by 70%. Amitriptyline killed cells at 200-500 μM in a concentration-dependent fashion. Chelating cytosolic Ca with 1,2-bis(2-aminophenoxy)ethane- N, N, N', N'-tetraacetic acid/AM did not reverse amitriptyline-induced cytotoxicity. Collectively, our data suggest that in MG63 cells, amitriptyline induced [Ca] rises by evoking PLC-dependent Ca release from the endoplasmic reticulum and Ca entry via PKC-regulated store-operated Ca entry. Amitriptyline also induced Ca-disassociated cell death.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.