In the future, (electro‐)chemical catalysts will have to be more tolerant towards a varying supply of energy and raw materials. This is mainly due to the fluctuating nature of renewable energies. For example, power‐to‐chemical processes require a shift from steady‐state operation towards operation under dynamic reaction conditions. This brings along a number of demands for the design of both catalysts and reactors, because it is well‐known that the structure of catalysts is very dynamic. However, in‐depth studies of catalysts and catalytic reactors under such transient conditions have only started recently. This requires studies and advances in the fields of 1) operando spectroscopy including time‐resolved methods, 2) theory with predictive quality, 3) kinetic modelling, 4) design of catalysts by appropriate preparation concepts, and 5) novel/modular reactor designs. An intensive exchange between these scientific disciplines will enable a substantial gain of fundamental knowledge which is urgently required. This concept article highlights recent developments, challenges, and future directions for understanding catalysts under dynamic reaction conditions.
Pt single sites are highly attractive due to their high atom economy and can be generated on CeO2 by an oxidative high-temperature treatment. However, their location and activity are strongly debated. Furthermore, reaction-driven structural dynamics have not been addressed so far. Here, we were able to evidence Ptinduced CeO2 surface restructuring, locate Pt single sites on CeO2 and track the variation of the active state under reaction conditions using a complementary approach of density functional theory calculations, in situ infrared spectroscopy, operando high-energy-resolution fluorescence detected X-ray absorption spectroscopy and catalytic CO (as well as C3H6 and CH4) oxidation. We find that the onset of CO oxidation is linked to the migration of Pt single sites from four-fold hollow sites to form small clusters containing few Pt atoms. This demonstrates that operando studies on single sites are essential to assess their fate and the resulting catalytic properties. a promise as they lower the noble metal content significantly as all atoms are potentially active species. [5][6][7][8][9] Exploiting the strong noble metal support interaction between Pt and CeO2, metallic Pt particles can be formed orin contrast to weakly interacting supports like Al2O3redispersed, with tremendous impact on the catalyst activity. [10][11][12][13] The preparation of SAC has been demonstrated for Pt, which can be atomically dispersed when using CeO2 as a support through an oxidizing treatment at 800 °C. 14 However, the exact structure of the single sites, their reactivity and, particularly, their state and dynamics during reaction are still unknown and heavily debated. 4,15,16 The location of Pt single sites is claimed to range from surface adsorbates on {111} ceria steps, 17,18 {111}, 19 {110} 20,21 or {100} 6,22,23 ceria facets to surface 21,24,25 or bulk Ce substitutes [26][27][28] forming Ce1-XPt 2+ XO2-Y-composites. During change of the gas atmosphere and of the temperature, the structure of the single sites may strongly change resulting in a new and more active state. For example, after a high temperature treatment strong Pt-O-Ce bonds are reported to over-stabilize the single sites which are thus less active. 29 During the catalytic oxidation, oxygen is suggested to be provided by the support, while the reactant e.g. CO is adsorbed directly on Pt, 22,25 similar to Pt nanoparticles on CeO2. 30 Bera et al. correlated the intensity of the Pt-O-Ce bond observed by Extended X-ray Absorption Fine Structure (EXAFS) measurements with the catalytic activity for Ce1-XPt 2+ XO2-Y, 31 and Nie et al. 24demonstrated that the catalytic activation of a Pt single atom catalyst can be increased by steam treatment. It is suggested that this treatment leads to the formation of Ce1-XPt 2+ XO2-YH-OH species that are catalytically more active than Ce1-XPt 2+ XO2-Y. 24 In contrast, other studies report an increase in catalytic activity after a reductive treatment at temperatures below 300 °C. 9,32-34 Importantly, such
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.