The effect of phospholipid formulation and choice of surfactant on skin permeation of selected hydrophilic drugs from elastic liposomes across human epidermal membrane has been studied. Sodium cholate and various concentrations of phosphatidylcholine were used for the preparation of liposomes namely hydrogenated phosphatidylcholine 90% (Phospholipon 90H), phosphatidylcholine 95% (Phospholipon 90G), phosphatidylcholine 78.6% (Phospholipon 80), and phosphatidylcholine 50% (Phosal PG). To investigate the effect of the surfactant, liposomes were prepared from 95% phosphatidylcholine (Phospholipon 90G) and various surfactants (sodium cholate, sodium deoxycholate, Span 20 (sorbitan monolaurate), Span 40 (sorbitan monopalmitate), Span 60 (sorbitan stearate) and Span 80 (sorbitan monooleate)). The vesicles were prepared by the conventional rotary evaporation technique. The film was hydrated with phosphate-buffered saline (10 mL) containing 9, 2 and 2.5 mg mL(-1) of methotrexate, idoxuridine and aciclovir, respectively. All formulations contained 7% ethanol. Homogenously-sized liposomes were produced following extrusion through 100-nm polycarbonate filters using Lipex Extruder. Particle size was characterized by transmission electron microscopy. Vertical Franz diffusion cells were used for the study of drug delivery through human epidermal membrane. For the three drugs, the highest transcutaneous fluxes were from elastic liposomes containing 95% phosphatidylcholine. In general, a higher flux value was obtained for liposomes containing sodium cholate compared with sodium deoxycholate. For the liposomes containing sorbitan monoesters, there was no clearly defined trend between alkyl chain length and flux values. Overall, transcutaneous fluxes of liposomal preparations of hydrophilic drugs were comparable with those from saturated aqueous solutions (P > 0.05).
Since Rooibos tea contains high levels of flavonoid antioxidants with potential health benefits when taken orally or applied topically, the quantity of the antioxidants crossing the physiological barriers is of scientific, clinical and commercial importance. This study investigated the in vitro transport of aspalathin, a unique flavonoid constituent of Rooibos tea, across intestinal epithelial cells and the human skin. The transport studies were conducted for both pure aspalathin solutions and extracts from unfermented (or green) Rooibos (Aspalathus linearis) aerial plant material across human abdominal skin in vertical Franz diffusion cells and Caco-2 cell monolayers in Transwell 6-well plates. The results obtained from the percutaneous permeation studies demonstrated that only 0.01% of the initial aspalathin dose from both the test solution and extract permeated through the skin, which was in accordance with the prediction from its log P value of -0.347. A portion of 0.07% of the initial aspalathin dose penetrated the different layers of the skin for the green Rooibos extract solution and 0.08% for the pure aspalathin solution. The transport of aspalathin across Caco-2 cell monolayers was concentration dependent and reached almost 100% (P(app) = 20.93 x 10(-6) cm/s) of the initial dose in the highest concentration tested for the extract, while it was only 79.03% (P(app) = 15.34 x 10(-6) cm/s) of the initial dose for the highest concentration of the aspalathin solution.
Natural oil nano-emulsions successfully deliver CLF, ATM and DQ and in principle could be used as supplementary topical treatment of cutaneous tuberculosis (CTB). Graphical Abstract ᅟ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.