We develop estimation for potentially high-dimensional additive structural equation models. A key component of our approach is to decouple order search among the variables from feature or edge selection in a directed acyclic graph encoding the causal structure. We show that the former can be done with nonregularized (restricted) maximum likelihood estimation while the latter can be efficiently addressed using sparse regression techniques. Thus, we substantially simplify the problem of structure search and estimation for an important class of causal models. We establish consistency of the (restricted) maximum likelihood estimator for low-and high-dimensional scenarios, and we also allow for misspecification of the error distribution. Furthermore, we develop an efficient computational algorithm which can deal with many variables, and the new method's accuracy and performance is illustrated on simulated and real data.
We consider the problem of inferring the total causal effect of a single variable intervention on a (response) variable of interest. We propose a certain marginal integration regression technique for a very general class of potentially nonlinear structural equation models (SEMs) with known structure, or at least known superset of adjustment variables: we call the procedure S-mint regression. We easily derive that it achieves the convergence rate as for nonparametric regression: for example, single variable intervention effects can be estimated with convergence rate $n^{-2/5}$ assuming smoothness with twice differentiable functions. Our result can also be seen as a major robustness property with respect to model misspecification which goes much beyond the notion of double robustness. Furthermore, when the structure of the SEM is not known, we can estimate (the equivalence class of) the directed acyclic graph corresponding to the SEM, and then proceed by using S-mint based on these estimates. We empirically compare the S-mint regression method with more classical approaches and argue that the former is indeed more robust, more reliable and substantially simpler.Comment: 40 pages, 14 figure
We consider identifiability of partially linear additive structural equation models with Gaussian noise (PLSEMs) and estimation of distributionally equivalent models to a given PLSEM. Thereby, we also include robustness results for errors in the neighborhood of Gaussian distributions. Existing identifiability results in the framework of additive SEMs with Gaussian noise are limited to linear and nonlinear SEMs, which can be considered as special cases of PLSEMs with vanishing nonparametric or parametric part, respectively. We close the wide gap between these two special cases by providing a comprehensive theory of the identifiability of PLSEMs by means of (A) a graphical, (B) a transformational, (C) a functional and (D) a causal ordering characterization of PLSEMs that generate a given distribution P. In particular, the characterizations (C) and (D) answer the fundamental question to which extent nonlinear functions in additive SEMs with Gaussian noise restrict the set of potential causal models and hence influence the identifiability.On the basis of the transformational characterization (B) we provide a score-based estimation procedure that outputs the graphical representation (A) of the distribution equivalence class of a given PLSEM. We derive its (high-dimensional) consistency and demonstrate its performance on simulated datasets.
Flow of two phases in a heterogeneous porous medium is modeled by a scalar conservation law with a discontinuous coefficient. As solutions of conservation laws with discontinuous coefficients depend explicitly on the underlying small scale effects, we consider a model where the relevant small scale effect is dynamic capillary pressure. We prove that the limit of vanishing dynamic capillary pressure exists and is a weak solution of the corresponding scalar conservation law with discontinuous coefficient. A robust numerical scheme for approximating the resulting limit solutions is introduced. Numerical experiments show that the scheme is able to approximate interesting solution features such as propagating non-classical shock waves as well as discontinuous standing waves efficiently
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.