Identifying neurobiological differences between patients with major depressive disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression.OBJECTIVE To quantify the upper bounds of univariate effect sizes, estimated predictive utility, and distributional dissimilarity of healthy individuals and those with depression across structural magnetic resonance imaging (MRI), diffusion-tensor imaging, and functional task-based as well as resting-state MRI, and to compare results with an MDD polygenic risk score (PRS) and environmental variables. DESIGN, SETTING, AND PARTICIPANTSThis was a cross-sectional, case-control clinical neuroimaging study. Data were part of the Marburg-Münster Affective Disorders Cohort Study. Patients with depression and healthy controls were recruited from primary care and the general population in Münster and Marburg, Germany. Study recruitment was performed from September 11, 2014, to September 26, 2018. The sample comprised patients with acute and chronic MDD as well as healthy controls in the age range of 18 to 65 years. Data were analyzed from October 29, 2020, to April 7, 2022.MAIN OUTCOMES AND MEASURES Primary analyses included univariate partial effect size (η 2 ), classification accuracy, and distributional overlapping coefficient for healthy individuals and those with depression across neuroimaging modalities, controlling for age, sex, and additional modality-specific confounding variables. Secondary analyses included patient subgroups for acute or chronic depressive status.RESULTS A total of 1809 individuals (861 patients [47.6%] and 948 controls [52.4%]) were included in the analysis (mean [SD] age, 35.6 [13.2] years; 1165 female patients [64.4%]). The upper bound of the effect sizes of the single univariate measures displaying the largest group difference ranged from partial η 2 of 0.004 to 0.017, and distributions overlapped between 87% and 95%, with classification accuracies ranging between 54% and 56% across neuroimaging modalities. This pattern remained virtually unchanged when considering either only patients with acute or chronic depression. Differences were comparable with those found for PRS but substantially smaller than for environmental variables.CONCLUSIONS AND RELEVANCE Results of this case-control study suggest that even for maximum univariate biological differences, deviations between patients with MDD and healthy controls were remarkably small, single-participant prediction was not possible, and similarity between study groups dominated. Biological psychiatry should facilitate meaningful outcome measures or predictive approaches to increase the potential for a personalization of the clinical practice.
MotivationThe application of next-generation sequencing in research and particularly in clinical routine requires valid variant calling results. However, evaluation of several commonly used tools has pointed out that not a single tool meets this requirement. False positive as well as false negative calls necessitate additional experiments and extensive manual work. Intelligent combination and output filtration of different tools could significantly improve the current situation.ResultsWe developed appreci8, an automatic variant calling pipeline for calling single nucleotide variants and short indels by combining and filtering the output of eight open-source variant calling tools, based on a novel artifact- and polymorphism score. Appreci8 was trained on two data sets from patients with myelodysplastic syndrome, covering 165 Illumina samples. Subsequently, appreci8’s performance was tested on five independent data sets, covering 513 samples. Variation in sequencing platform, target region and disease entity was considered. All calls were validated by re-sequencing on the same platform, a different platform or expert-based review. Sensitivity of appreci8 ranged between 0.93 and 1.00, while positive predictive value ranged between 0.65 and 1.00. In all cases, appreci8 showed superior performance compared to any evaluated alternative approach.Availability and implementationAppreci8 is freely available at https://hub.docker.com/r/wwuimi/appreci8/. Sequencing data (BAM files) of the 678 patients analyzed with appreci8 have been deposited into the NCBI Sequence Read Archive (BioProjectID: 388411; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411).Supplementary information Supplementary data are available at Bioinformatics online.
The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.