The roughness of material surfaces is of greatest relevance for applications. These include wear, friction, fatigue, cytocompatibility, or corrosion resistance. Today’s descriptors of the International Organization for Standardization show varying performance in discriminating surface roughness patterns. We introduce here a set of surface parameters which are extracted from the appropriate persistence diagram with enhanced discrimination power. Using the finite element method implemented in Abaqus Explicit 2019, we modelled American Rolling Mill Company pure iron specimens (volume 1.5 × 1.5 × 1.0 mm3) exposed to a shot peening procedure. Surface roughness evaluation after each shot impact and single indents were controlled numerically. Conventional and persistence-based evaluation is implemented in Python code and available as open access supplement. Topological techniques prove helpful in the comparison of different shot peened surface samples. Conventional surface area roughness parameters might struggle in distinguishing different shot peening surface topographies, in particular for coverage values > 69%. Above that range, the calculation of conventional parameters leads to overlapping descriptor values. In contrast, lifetime entropy of persistence diagrams and Betti curves provide novel, discriminative one-dimensional descriptors at all coverage ranges. We compare how conventional parameters and persistence parameters describe surface roughness. Conventional parameters are outperformed. These results highlight how topological techniques might be a promising extension of surface roughness methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.